

Application Note: Loop Tuning

Einstellung des Positionsreglers

© 2017 NTI AG

Dieses Werk ist urheberrechtlich geschützt.

Alle Rechte, auch die der Übersetzung, des Nachdrucks und der Vervielfältigung des Handbuches oder Teilen daraus, sind vorbehalten. Kein Teil des Werks darf ohne schriftliche Genehmigung von NTI AG in irgendeiner Form (Fotokopie, Mikrofilm oder einem anderen Verfahren), auch nicht für Zwecke der Unterrichtgestaltung, reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

LinMot® ist ein registriertes Markenzeichen von NTI AG.

Hinweis

Die Angaben in dieser Dokumentation entsprechen dem Stand der Entwicklung zur Zeit der Drucklegung und sind daher unverbindlich. NTI AG behält sich vor, Änderungen, die dem technischen Fortschritt bzw. der Produktverbesserung dienen, jederzeit und ohne Angaben von Gründen vorzunehmen. Im Übrigen verweisen wir auf unsere "Allgemeinen Geschäftsbedingungen" in der jeweils gültigen Ausgabe

NTI AG LinMot[®] Bodenaeckerstr. 2 CH-8957 Spreitenbach Tel.: +41 (0)56 419 91 91 Fax: +41 (0)56 419 91 92 Email: office@LinMot.com Homepage: www.LinMot.com

Inhalt

Inhalt	3
Einsatz und Verwendung dieses Dokuments	4
Empfohlene Dokumente	4
1 Einstellen des Positionsreglers	5
1.1 Vorfilterparameter	6
1.2 Reglerparameter	6
2 Einstellen des Positionsreglers	7
2.1 Ausführen des Motorwizards	7
2.2 Reglereinstellung	9
2.2.1 Vorbereitende Schritte zur Reglereinstellung	9
2.2.2 Einstellen des Reglers mittels empirischem Verfahren	13
2.2.3 Überprüfen der erreichten Regelqualität mit dem Oszilloskop	14
2.3 Spezielle Betriebsarten des Servoreglers und die Einflüsse auf den Positionsregler	
Anhang I	21
Notizen	24
Kontakt & Support	25

Einsatz und Verwendung dieses Dokuments

Beschreibung:	Dieses Dokument dient als Leitfaden zum Einstellen des Lagereglers
Drive(s):	A1100, B1100-XX-XX, C11X0-XX, C12X0-XX(-XX), E11X0-XX, E12X0-XX(-XX), E14X0-XX(-XX)
Klassifizierung:	[x] Application Note [] Installationshandbuch [] Benutzerhandbuch [] Dokumentation [] LinMot intern

Empfohlene Dokumente

Die Lektüre der folgenden Handbücher ist Voraussetzung zum Verständnis der Kommunikation zwischen SPS und dem LinMot Drive. Die Handbücher sind in der LinMot-Talk Software enthalten (*Menü Handbücher -> Gesamte Dokumentation*, bzw. *Relevante Dokumentation*, wenn auf einem Drive eingeloggt), oder können aus dem LinMot eKatalog geladen werden (Suche nach Dokument Referenz): <u>http://shop.linmot.com</u>

Name Handbuch	Dokument Referenz
LinMot-Talk	0185-1059
Motion Control Software	0185-1092 / 0185-1093

s Window Tools	Manuals Help	_				
₽	Parameters and Variables		* > •	Q I	2	
	Errors					
	Motion Commands	Ŀ				
	Relevant Documents					
	All Documents		Application	•		
L			EC Motors	+		
			General	+		
			Installation	•		
			Interface	۰J		
			MotionControl	<u> </u>	X	0185-1055-E_1V11_MA_EC-Motors-with-LinMot-Drives.pdf
			QuickStart	•	X	0185-1092-E_3V18_MA_MotionCtrlSW.pdf
		_			X	0185-1093-E_6V3_MA_MotionCtrlSW-SG5.pdf
					X	0185-1096-D_1V0_MA_TF_ForceControl.pdf
				•	X	0185-1096-E_1V0_MA_TF_ForceControl.pdf

1 Einstellen des Positionsreglers

Für das Einstellen des Positionsreglers sind einige Vorüberlegungen sinnvoll. Speziell, welche Genauigkeitserwartungen an das System gestellt werden. Als Faustformel kann man sagen, dass etwa das Zehnfache der Auflösung des Positionssensors als erreichbare Genauigkeit anzusehen ist. Liefert z.B. das Gebersystem eine Auflösung von 50um dann kann der Regler maximal auf 500um genau regeln. Abbildung 1 zeigt die Übersicht der Reglerstruktur für die Positionsregelung. Zunächst einige Informationen zu den jeweiligen Parametern.

Allgemein bezeichnen die Buchstaben "FF" z.B. bei FF Friction die generelle Bedeutung dieser Variable. FF steht für "Feed Forward" und ist im Allgemeinen als Vorfilter bekannt. Vorfilter dienen in der Regelungstechnik dazu, bekannte und statisch fixe Störgössen direkt zu behandeln und nicht über die PID-Reglerstruktur zu führen. Dies hat den Vorteil, dass die Einwirkung der bekannten Störgrösse sofort unverzögert behandelt wird. Weiterhin wird diese Störgrösse vom PID Algorithmus ferngehalten, was die Einstellung dieses Reglers im Allgemeinen vereinfacht.

Bei LinMot Servoreglern werden folgende Vorfilter bereitgestellt:

- FF Friction: Vorfilter, um bekannte, fixe Reibungseffekte zu kompensieren
- FF Damping: Vorfilter, um bekannte dämpfende Effekte, wie viskose Reibung zu kompensieren
- FF Acceleration: Kraftkompensation bei Beschleunigungsvorgängen der Lastmasse
- FF Spring Compensation: Vorfilter zur Berücksichtigung von Federkräften
- FF Constant Force: Vorfilter für fixe Lastmassen, wird speziell bei vertikalem Betrieb des Linearmotors verwendet

1.1 Vorfilterparameter

In Abbildung 1 wird ersichtlich, welche Eingangsgrössen über die Vorfilter multiplikativ verknüpft werden. Die Vorfilterergebnisse werden direkt als Ausgangsstrom zusammenaddiert.

Die Eingangsgrössen dieser Reglerstruktur werden vom Sollwertgenerator bereitgestellt und werden hier nicht weiter behandelt.

Betrachtet man nun einmal den Vorfilter für die Reibung "*FF Friction*", sieht man in der Übersicht, dass dieser Wert mit Vorzeichenberücksichtigung mit der Sollgeschwindigkeit (Demand Velocity) verrechnet wird. Bei jedem Vorzeichenwechsel der Sollgeschwindigkeit wird hier direkt eine starke Ausgangsänderung erreicht. In bestimmten Betriebsarten kann dies negative Effekte zeigen. Dies wird später noch diskutiert.

Der Vorfilter für die viskose Reibung (*FF Damping*) wird ebenfalls mit der Sollgeschwindigkeit verrechnet. Die Sollbeschleunigung wird direkt mit dem Vorfilter *FF Acceleration* verrechnet.

Bei dem Vorfilter zur Federkompensation wird zunächst über eine Summation der Eingriffspunkt bestimmt. Der Wert Ist-Position minus Feder Null Position (Spring Zero Position) wird mit diesem Vorfilterparameter verrechnet.

Besonders interessant ist der Vorfilter *FF Constant Force*. Dieser wirkt immer, um eine konstante Kraftwirkung zu kompensieren. Dies kann z.B. eine fixe Lastmasse sein, die im vertikalen Betrieb eine Gewichtskraft auf den Läufer ausübt.

Diese Vorfilterwerte werden vom Motorwizard automatisch, basierend auf den Eingaben, berechnet. Daher ist es relevant, falls bestimmte Grössen bekannt sind, diese im Motorwizard ein zu geben. Sind die Grössen nicht bekannt, geben Sie "0" ein. Bei der Eingabe von Federdaten müssen alle relevanten Daten zur Feder eingetragen werden!

1.2 Reglerparameter

Nun zur generellen Verarbeitung der Reglerdaten des PID Reglers. PID steht für Proportional (P), Integral (I) und Differential (D) Regler.

In diesem Regler sind drei Verarbeitungsstrukturen zusammengefasst. Diese können nach Bedarf konfiguriert werden.

Der P-Regler (Proportionalregler) arbeitet rein multiplikativ. Hier wird die Regelabweichung aus Sollposition minus Istposition errechnet und multiplikativ mit dem Faktor *P Gain* verrechnet. Man sieht hier, dass eine Änderung vom Sollwert oder dem Istwert eine direkte Änderung des Ausgangssignals herbeiführt. Dieser Regler arbeitet daher direkt und schnell. Allerdings erkennt man auch, dass immer eine Abweichung von Soll und Ist bestehen muss, damit ein Ausgangssignal erzeugt wird. Demzufolge kann ein P-Regler nie den vorgegebenen Sollwert erreichen.

Der I-Regler (Integralregler) verarbeitet ebenfalls die Regelabweichung aus Sollposition minus Istposition. Allerdings "integriert" er diese Abweichung auf. Das heisst, zum jeweiligen Rechendurchlauf wird diese Abweichung auf die letzte Abweichung aufaddiert. Das zeitliche Verhalten des Aufsummierens/Integrierens wird über den Faktor *I Gain* beeinflusst. Dieser "Aufsummiervorgang" stoppt erst, wenn die Regelabweichung null ist, also Sollposition = Istposition. Der Regelvorgang hier erfolgt allerdings langsam. Daher wird der I-Regler selten alleine verwendet. Er dient im Wesentlichen dazu, die Regelabweichung zu "Null" zu machen. Am Ausgang dieser Verarbeitung findet sich noch das "Integrator Limit". Dieser Wert bewirkt ein Stopp des Aufsummiervorgangs, wenn ein bestimmter Ausgangswert erreicht ist. Ansonsten kann das Aufsummieren gegen unendlich laufen, falls es betriebsbedingt nicht möglich ist, die Regelabweichung zu beseitigen (z.B. ein Hindernis blockiert das Positionieren auf die Zielposition).

Der D-Regler (Differentialregler) arbeitet hier mit der Abweichung von Sollgeschwindigkeit minus Istgeschwindigkeit. Der D-Regler wirkt wie der P-Regler direkt und schnell, allerdings erzeugt dieser nur ein Ausgangssignal, während eine Änderung des Eingangssignals besteht.

2 Einstellen des Positionsreglers

2.1 Ausführen des Motorwizards

Für die Reglereinstellung ist Schritt 5 im Motorwizard relevant. Die Eingabemaske sieht wie folgt aus:

Motor Wizard			Motor Wizard		
Step 4/8: Feed Forward Par	ameters		Step 4/8: Feed Forward Pa	rameters	
Step 40. Feed Forward Par Mechanical Layout Moving Part of Motor: Orientation Angle (-90°, -+90°): Moving Mass Silder: Additional Load Mass: Friction Forces Dry Friction: Wiscous Friction: MagSpring (or other constant f External Constant Force: Force Direction:	Silder • 0 • 259 g 0 g 0 N/(m/s) -sorte 0 N Negative •	→	Mechanical Layout Moving Part of Motor: Orientation Angle (-90°+90°): Moving Mass Silder: Additional Load Mass: Friction Forces Dry Friction: Wacous Friction: MagSpring (or other constant External Constant Force: Force Direction:	sider • 90 • 859 0 0 N 0 N 0 N Negative •	
Derived Settings	Value	Comment	Derived Settings	Value	Comment
Total Moving Mass	859 g		Total Moving Mass	859 g	
Gravitation force in motor direct	ON		Gravitation force in motor direct.	8.424 N	
Sum of Constant Effective Eorces	ON		External Constant Force	9 424 N	
EE Constant Ence	0.4	Current for constant force compensation	EE Constant Enroe	0.495.4	Current for constant force compensation
EF Friction	0 A	Current for compensation of dry friction	EE Eriction	0.4	Current for compensation of dry friction
EE Damping	0 A /(m/s)	Eactor for compensation of viscous friction	EE Damping	0 A/(m/s)	Eactor for compensation of viscous friction
EE Acceleration	0.051 A/(m/s^2)	Acceleration feed forward factor	EE Acceleration	0.051 A/(m/s^2)	Acceleration feed forward factor
		Freedow a contracted for the difference	Acceleration	orost Affinia 21	Acceleration recurrent recon
Help <back< td=""><td>Next > Finish Cancel</td><td></td><td>Help <back< td=""><td>Next > Finish Cancel</td><td></td></back<></td></back<>	Next > Finish Cancel		Help <back< td=""><td>Next > Finish Cancel</td><td></td></back<>	Next > Finish Cancel	

Abbildung 1: Motor Wizard: Vorfilter

Abbildung 2: Motor Wizard: Konstantkraft

Im oberen Bereich können bekannte Grössen wie z.B. Lastmasse, Reibungskräfte und Einbaulage eingegeben werden. In der Tabelle unten sieht man dann die automatisch errechneten Vorfilterwerte, die sich aus den Benutzerangaben ergeben.

In der Abbildung 1 sind keine Angaben getroffen worden, die Einbaurichtung ist horizontal. Es wird nur ein Wert für die FF Acceleration errechnet (aus der Läufermasse).

In Abbildung 2 wurde die Einbaurichtung mit +90° gewählt. Hier ergibt die Gewichtskraft des Läufers bereits ein fixen Arbeitsstrom, um den Läufer auf Position zu halten (FF Constant Force).

📉 Motor Wizard					
Schritt 6/9:					
PID Positionsreg	ler-Einstel	lung			
P Verstärkung:	3	A/mm	Setze Standardwerte 'wei	th' (P=3, D=7, I=0)	
D Verstärkung:	7	A/(m/s)	Cates Chanded water later		
I Verstärkung:	0	A/(mm*s)	Setze Standardwerte ste	(P=7.5, D=17.5, 1=0)	
D Filter Time:	0	us			
Geräuschfilter:					
- 4 1	0.01				
lotband		mm	Geräuschfilter ver	wenden	
Reglergüte haben		Valua		Company	
Derived Settings		Value		Comment	
P Gain		3 A/mm			
LGain		/ A/(III/S) 0 A/(mm*c)			
Integrator Limit		8 A			
Maximal Current		8 A			
Geräuschfilter-Totban	d	0.01 mm			
Hilfe < Z	urück	Weiter >	ertigstellen Abbrechen		

Abbildung 3: PID Reglerparameter im Motor Wizard

Der Motor Wizard muss generell ausgeführt werden. Daher empfiehlt es sich, alle relevanten Angaben zu machen, dadurch werden alle Vorfilter automatisch gesetzt.

Für die eigentliche Feineinstellung des Positionsreglers kann man dann mit dem Parameterbaum arbeiten.

Hinweis: Im Normalbetrieb deaktivieren Sie den "Enable Noise Filter"

Wenn der Haken bei "Enable Noise Filter" gesetzt ist, friert der Servoregler den Motorstrom ein, wenn die Reglerabweichung innerhalb der Grenze «Totband» liegt. Dies vermeidet Geräusche, aber kann in bestimmten Anwendungen den Motor unnötig aufheizen.

2.2 Reglereinstellung

Zum Einstellen des Reglers wird hier ein empirisches Verfahren vorgestellt, das in den meisten Fällen gute Ergebnisse erzielt.

Hierzu muss die Servo-Achse betriebsbereit montiert sein und sie muss möglichst im Arbeitsbereich verfahrbar sein!

2.2.1 Vorbereitende Schritte zur Reglereinstellung

Um die Auswirkungen von veränderten Reglerparametern zu sehen, muss zunächst eine kontinuierliche Bewegung erfolgen. Dies kann am einfachsten wie folgt erreicht werden:

Abbildung 2: Definition der Positionen für den Testbetrieb

Öffnen Sie im Parameterbaum den Triggered VA Interpolator und stellen Sie für "Trig Fall Config" und "Trig Rise Config" die Werte ein. Diese beiden Werte definieren zwei Positionen der Achse, z.B. "Fall Config" für Position 0mm, die "Rise Config für Position 100mm (abhängig vom möglichen Arbeitsbereich der Achse!).

Weiterhin sollten Sie bei diesen beiden Positionsangaben die maximal zulässige Geschwindigkeit, Beschleunigung und Verzögerung so angeben, wie diese im normalen Arbeitsbetrieb verwendet werden.

i

Hinweis: Testbetrieb zur Reglereinstellung

Verwenden Sie bei beiden Positionsangaben die maximal zulässige Geschwindigkeit, Beschleunigung und Verzögerung, die Sie im normalen Arbeitsbetrieb verwenden werden!

Dann aktivieren Sie die Betriebsart "Two Point Continuous".

Project	👸 VAI 2 Pos Continuous		🗸 🗙	C DE	F
E1200-GP-0C offline (USER)	Name	Value	Raw Data	UPID	Туре
Control Panel Control Panel Parameters Gradient Control SW Control SW Configuration Config	Name C Motion Command Interface C Triggered VA-Interpolator C Rise Triggered VAI For/Backward C Triggered Time Curves C Command Table Mode C Triggered Command Table C Position Indexing C Analog C Triggered Analog C Triggered CAM Curve C Triggered CAM Curve	Value Off Off Off Off Off Off Off Off Off Of	Raw Data 0001h 0002h 000Dh 0007h 0003h 000Ch 000Ah 000Ah 0004h 0008h 0008h	UPID 1450h 1450h 1450h 1450h 1450h 1450h 1450h 1450h 1450h	Type UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16 UInt16
	C Continuous Curve C PC Motion Command Interface	Off Off	0005h 0010h	1450h 1450h 1450h	UInt16 UInt16 UInt16

Wenn Sie dann den Regler nach der Referenzfahrt einschalten, fährt die Achse kontinuierlich zwischen diesen beiden Punkten hin und her ("Switch On" im Control Panel).

Zum Beurteilen der Reglerqualität verwenden Sie das integrierte Oszilloskop. Die Bedienung des Oszilloskops finden Sie im Anhang I.

Empfohlene Vorgehensweise für die Reglereinstellung:

Lassen Sie wie oben beschrieben die Achse zwischen zwei Punkten möglichst im gewünschten Arbeitsbereich verfahren.

Dann öffnen Sie ein zweites LinMot-Talk Fenster.

Abbildung 3: Öffnen eines neuen LinMot-Talk Fensters

Sie erhalten denselben Drive in einem zusätzlichen Fenster angezeigt:

Abbildung 4: Drive in zwei LinMot-Talk Fenster

In einem der beiden Fenster wählen Sie folgende Ansicht:

Project	ů		\checkmark	🗶 😢 🛛 DEF
Unnamed on CUM7 (USER)	Name	Value	Raw Data	UPID
Parameters	FF Constant Force	0 A	00000000h	139Ch
⊳ · 📰 OS	FF Friction	0 A	00000000h	139Dh
Motion Control SW	FF Spring Compensation	0 A/m	0000h	139Eh
Drive Configuration	FF Damping	0 A/(m/s)	0000h	139Fh
Motor Configuration	FF Acceleration	0.072 A/(m/s^2)	0048h	13A0h
State Machine Setup	Spring Zero Position	0 mm	00000000h	13A1h
Motion Interface	^L P Gain	3 A/mm	001Eh	13A2h
	D Gain	7 A/(m/s)	0046h	13A3h
Endback Selection	D Filter Time	Ous	0000h	13A8h
	L Gain	0 A/(mm*s)	0000h	13A4h
Control Parameter Set R	Integrator Limit	7.5 A	00001D4Ch	13A5h
Advanced Settings	Maximal Current	7.5 A	00001D4Ch	13A6h
	^L Noise Deadband Width	0 mm	0000h	13A7h
Errors & Warnings				

Abbildung 5: Reglerparametersatz für Einstellung/Optimierung anwählen

Im anderen Fenster wählen Sie das Oszilloskop (Siehe Anhang I zur Bedienung des Oszilloskops)

Abbildung 6: Vorbereitung der Oszilloskopaufzeichnung

Das hat den Vorteil, dass Sie die Reglerparameter im laufenden Betrieb der Achse verändern können und problemlos eine Kontrollmessung mit dem Oszilloskop im anderen Fenster vornehmen können.

2.2.2 Einstellen des Reglers mittels empirischem Verfahren

Zunächst kann man folgende Vorgehensweise nutzen: Setzen Sie für die *P Gain* den Wert 0.25, für *D Gain* den Wert 2.00 und für *I Gain* = 0.0 in den Reglerparametern des ersten Fensters.

Dann erhöhen Sie den Wert *D* Gain schrittweise um 1, bis der Motor zu schwingen beginnt (Geräuschentwicklung). Der hier erreichte Wert reduzieren Sie auf 60% (z.B. D = 10 bei Schwingung \rightarrow 10*60% = 6)

In nächsten Schritt erhöhen Sie wieder schrittweise den Wert für *P* Gain um 0.25 bis ebenfalls wieder ein Schwingen (Geräuschentwicklung) auftritt. Den hier erhaltenen Wert für *P* Gain reduzieren Sie auf 80% (z.B. P = $20 \rightarrow 20^{*}80\%$ = 16).

Machen Sie eine Kontrollmessung mit dem Oszilloskop. Wenn die Regelabweichung innerhalb Ihrer Genauigkeitserwartung liegt, ist die Reglereinstellung bereits beendet. Betrachten Sie hierzu vor allem die Regelabweichung, wenn eine der Sollpositionen erreicht ist (kurzer Stillstand der Bewegung!). Wird eine höhere Genauigkeit verlangt, müssen Sie nun noch die *I Gain* verwenden. Erhöhen Sie hierzu schrittweise die *I Gain* um den Wert 5, bis die Regelabweichung minimiert ist und kein Überschwingen beim Beschleunigen oder Bremsen auftritt. Hier ist ein Kompromiss zu finden, der im Rahmen der Genauigkeitsvorstellung liegen sollte.

Deaktivieren Sie zum Einstellen des Reglers den Geräuschfilter, indem Sie für «Noise Deadband Width» den Wert «0mm» einsetzen!

Dieser Filter dient der Geräuschunterdrückung, falls der Motor nach der Reglereinstellung noch störende Geräusche erzeugt. Der Filter stoppt die Funktion des I-Verstärkers, sobald die Regelabweichung innerhalb des definierten Bereichs liegt. Dadurch können hörbare Stromschwingungen unterdrückt werden. Allerdings erfolgt innerhalb dieses Fensters keine exakte Lageregelung, da die Wirkung des I-Anteils immer nur ausserhalb dieses Fensters aktiv wird.

2.2.3 Überprüfen der erreichten Regelqualität mit dem Oszilloskop

.inMot®

Oszilloskopmessung mit den "weichen" Reglerwerten des Motorwizards:

Abbildung 7: Lageregler mit Standardwerten vom Motor Wizard

In dieser Aufzeichnung lässt sich eine bleibende Regeldifferenz feststellen.

Abbildung 8: Reglerverhalten nach Einstellen von D- und P-Gain

Nach den ersten Schritten zum Einstellen von D Gain und P Gain ergibt sich dieses Bild, mit einer geringeren, bestehenden Regeldifferenz.

Oszilloskopmessung nach Einstellen von P Gain, D Gain und I Gain:

Comment:

(Parameter Caption, UPID, Value): (Serial Number, 0410h, 1761.55T.047) (Device Type, 03FCh, E1250-IP-UC/V1RE) (Article Number, 041Ah, 0150-1761) (Firmware Release, 0424h, 6.1 Build 20140428-IM) (OS File Name, 042Eh, OSSW_E1200_V6S1_a03)

(ADF File Name, 184Ch, PS02-23Sx80F-HP)

Abbildung 9: Reglerverhalten nach Optimierung mit I Gain

Die Regeldifferenz ist nun nahezu Null und unterliegt lediglich leichten Schwankungen die aus der Bewegung selbst und der mechanischen Rückwirkungen entstehen.

Kontrollieren Sie in den Oszilloskop-Messungen auch den "Demand Current". Dieser sollte möglichst nicht die Stromgrenzen erreichen, oder gar für eine gewisse Zeit als "Gerade" an den Stromgrenzen liegen. Dies hätte zur Folge, dass der Regler bereits voll ausgesteuert wäre und die gewünschte Positionierung nicht erreichen kann, da nicht weiterer Strom gestellt werden kann.

Abbildung 10: Positionsregler mit Stromlimit

In dieser Aufzeichnung war das Stromlimit grenzwertig gesetzt. Man sieht den Strom am Limit, die Positionsregelung arbeitet nicht mehr korrekt, der Antrieb ist an der Grenze des Schleppfehlers. Bei Überlastbedingungen kann dies ebenfalls ähnlich aussehen.

inMot

(Parameter Caption, UPD, Value): (Serial Number, 0410h, 1761.55T.047) (Device Type, 03FCh, E1250-IP-UC/V1RE) (Article Number, 041Ah, 0150-1761) (Firmware Release, 0424h, 6.1 Build 20140428-IM) (OS File Name, 042Eh, OSSW_E1200_V6S1_a03) (ADF File Name, 184Ch, PS02-23Sx80F-HP)

Abbildung 11: Positionsregler mit Last-/Beschleunigungsgrenzen

In dieser Aufzeichnung sind die kritischen Bereiche des Stromes rot markiert. Das tritt in dieser Form in der realen Anwendung häufig auf, wenn die Last grösser ist, als ursprünglich ausgelegt, oder wenn z.B. höhere Geschwindigkeiten gefordert werden, die in der Motorauslegung nicht berücksichtigt wurden. Dieser Anwendungsfall ist gerade noch betriebsfähig. Die Dynamik des Positionsreglers ist aber eingeschränkt. Je nach Betriebsweise (Sollwerte, Last) und Systemalterung (Wartung) kann dies zu gelegentlichen Positionierungsproblemen führen.

Hinweis: Der Strom kann auch gezielt begrenzt worden sein!

Für manche Anwendungen wird gerne der Strom zum Begrenzen der Motorkraft z.B. per SPS begrenzt. Speziell wenn der Regler bereits in Betrieb war und Sie nachoptimieren wollen, kontrollieren Sie den Wert "Maximal Current" bei den Reglerparametern. Dieser Wert sollte den zulässigen Maximalstrom des Motors enthalten, sonst wird die mögliche Dynamik hierdurch ggf. begrenzt.

Den Motormaximalstrom finden Sie im Parameterbaum hier:

Project	гñ			🗙 😢 🛛 🕅	EF
Unnamed on COM7 (USER)	Name	Value	Pau Data	LIDID	Tune
	Name	value	naw Data	UFID	туре
A E Parameters	Maximal Current	7.5 A	00001D4Ch	119Eh	SInt32
⊳ 🚍 OS	Maximal Motor Supply Voltage	92 V	000023F0h	11A7h	UInt32
CIET Motion Control SW	Phase Resistance	4.4 Ohm	01B8h	119Fh	UInt16
Drive Configuration	^b Phase Resistance Definition Temp	20 °C	00C8h	120Bh	SInt16
🖉 🗐 Motor Configuration	Phase Inductance	0.6 mH	0006h	11A0h	UInt16
8 Motor Type	Force Constant	9.68 N/A	03C8h	11A1h	UInt16
Motor Definitions	Zero Position (ZP)	375 mm	00393870h	11A2h	SInt32
Position Feedback	Shortened Stroke (SS)	720 mm	006DDD00h	11A3h	SInt32
E Commutation	Maximal Stroke	780 mm	007704C0h	11A4h	SInt32
	Edge Force Constant	6.05 N/A	025Dh	11A5h	UInt16
Motor Identification	Extension Cable Besistance	0.0hm	00006	11A6h	Ulnt16
Motor Lommunication					
State Machine Setup					
Motion Interface					
A E Run Mode Settings					
Ban Hun Mode Selection					
Triggered VA-Interpolator Se					
Triggered Curves Settings					
Command Table Settings					
Triggered Command Table S					

2.3 Spezielle Betriebsarten des Servoreglers und die Einflüsse auf den Positionsregler

Wenn der Servoregler im "Streaming Mode" betrieben wird, erhält der Sollwertgenerator zyklisch neue Sollwerte. Diese neuen Werte werden direkt auf die Positionsreglerstruktur aufgeschaltet. Zur Verdeutlichung nochmals die Abbildung der Reglerstruktur:

Abbildung 12: Reglerstruktur des Positionsreglers

Wird nun durch die Betriebsvariante «Streaming» vom Sollwertgenerator eine neue "Demand Velocity" und/oder "Demand Acceleration" vorgegeben, reagieren die Vorfilterparameter direkt mit einer Motorstromänderung. Dies kann zu ungewünschten Oszillationen kommen (Geräuschbildung). Im Extremfall schwingt die gesamte Positionsregelung, unabhängig davon, wie Sie die Parameter für P- D- und I gewählt haben. Hier ist generell zu empfehlen, nach dem Motorwizard diese Vorfilterparameter im Positionsregler auf "0" zu setzen.

Hinweis: Reduzieren Sie Vorfilterparameter, wenn "Position Streaming" oder ein Drive Profil verwendet wird und ungewöhnliche Störungen in der Lageregelung auftreten! Bis auf den Vorfilter "FF Constant Force" setzen Sie alle Vorfilterparameter in der Positionsreglereinstellung auf null, um ungewünschte Schwingungen zu vermeiden.

Den gleichen Effekt erhalten Sie, wenn der Servodrive in der Betriebsart "Analog" betrieben wird. Hier wird mittels einer analogen Eingangsspannung (0...10V) der Positionssollwert vorgegeben. Diese Betriebsart muss konfiguriert werden. Hierbei kann die Mindeständerung der vorgegebenen Sollposition definiert werden, bevor diese an den Sollwertgenerator übergeben wird. Je kleiner diese Schwelle gewählt wird, umso stärker wirken die Vorfilterparameter, wenn diese nicht auf null gesetzt sind!

Project	🗂 Omm		 Image: A start of the start of	🗙 🕑 🛛	EF		
Control Panel	Name	Value	Raw Data	UPID	Туре	Scale	Offset
Control Panel Control Panel Control Panel Grammeters Grammet	Name ¹ 0V/-10V Position ¹ 10V Position <u>Undate Period Time</u> Evaluation Position Deviation	Value 0 mm 50 mm 2 0 mm	Raw Data 00000000h 0007A120h 0002h 00000000h	UPID 14D2h 14D3h 14D7h 14D7h 14D4h	Type Sint32 Sint32 Uint16 Uint32	Scale 0.0001 mm 0.0001 mm 1 0.0001 mm	Offset Omm Omm O Omm
Res Indexing Settings Analog Mode Settings Source Selection VAI 2 Position Settings To Bit Interface Scaling Predef VA Internolator							

Abbildung 13: Konfiguration des Analogeingangs für Positionsvorgabe

Anhang I

LinMot Servoregler haben ein integriertes Oszilloskop, das für verschiedenste Zwecke verwendet werden kann. Hier wird die generelle Verwendung für das Einstellen des Positionsreglers exemplarisch dargestellt. Weitere Betriebsweisen sind möglich.

Verbinden Sie sich mittels LinMot Talk mit dem Servoregler. Dort finden Sie im Parameterbaum den Eintrag "Oscilloscopes".

Wenn Sie auf diesen klicken, finden Sie im rechten Bereich von LinMot Talk den Eintrag "Default". Durch einen Doppelklick öffnet sich die Oszilloskopansicht. Mit einem Klick mit der rechten Maustaste können Sie hier ein Oszilloskop duplizieren, den Namen ändern, etc.

Das ist nützlich, um beispielsweise eine Aufzeichnung vor der Optimierung zu erstellen und diese dann später vergleichen zu können.

Abbildung 14: Erzeugen mehrerer Oszilloskope

Hinweis: Die erstellten Oszilloskope können mit der Gerätekonfiguration exportiert werden Wenn Sie den Einstellvorgang dokumentieren wollen, können Sie die einzelnen Oszilloskope mittels "Export Configuration" sichern. Diese Sicherungsdatei können Sie jederzeit "Offline" mit LinMot Talk öffnen und auswerten!

Die Funktionalität des Oszilloskops ist generell bei allen Servoreglern identisch. Es gibt jedoch Unterschiede bezüglich der Anzahl gleichzeitig nutzbarer Kanäle und die gesamte Aufzeichnungsdauer. Diese Funktionalität ist vom Servoreglertyp und dessen Speicher abhängig.

Die Standardeinstellung ist bereits passend für eine Regleroptimierung eingestellt.

1

Öffnen Sie die Oszilloskopansicht durch einen Doppelklick auf den Eintrag im Baum (z.B. Oscilloscope → Default). In der Oszilloskopansicht klicken Sie in der Symbolleiste auf das Werkzeug-Symbol. Es öffnet sich die Konfiguration des Oszilloskops.

LinMot-Talk 6.1						
File Search Drive Services Options	Window	Tools Manuals	Help			
🛅 🕇 🕽 🗄 🖃 🗁 🔛 😂 9	🚚 🛛 Unnan	med on COM7 (USER)		📕 📉 😽 🖬 🎎	🖻 🔔 🔺 🍠 🖪 🛛 🕄	
Project		SD RD 🗈 🐔	CH1 CH2 CH3 CH4 CH	s снь снл снв 📉	K.	
Unnamed on COM7 (USER)	mm	mm 🔺				
	180	180				:
▶ - 📰 OS						
A 🗐 Motion Control SW						
▷ · E Drive Configuration ▷ · E Motor Configuration	(0.11 0.11				53
▷ E State Machine Setup	160	Oscilloscope Settin	gs			
Motion Interface		General Trigger	Advanced			
⊿ - 📰 Run Mode Settings		Acquisition Mode:	Cinala Chat	_]		
Mun Mode Sele	140	Acquisition mode.	Single Shot	•		
		Recording Time:	1022	ms 🔻		
Trig Rise C		🔽 Channel 1			Channel 5	
Triggered Curvi		Group	Variable		Group	Variable
	120	MC SW Overview	Actual Positi	on 🔻	MC SW Overview 🔹	Demand Velocity 👻
▷ 🔄 CAM Mode Set		Channel 2			Channel C	
⊳ - 📰 Triggered CAM		Group	Variable		Group	Variable
> += Posindexing S	100	MC SW Overview	Demand Pos	ition 👻	MC SW Overview	Actual Velocity
VAI 2 Pos Cont	100					
16 Bit Interface Sca		🛛 🔽 Channel 3			Channel 7	1
Predet VA Interpola		Group	Variable	ĥ	Group	Variable
Time Curve Setting	80	MC SW Overview	Difference P	osition 🔻	MC SW Overview 🔹	Demand Acceleration
▷ 📃 Master Encoder CA		Channel 4			Channel 8	
Position Controller Position Controller		Group	Variable		Group	Variable
- 18- Peeuback Selection		MC SW Overview	V 👻 Demand Cur	rent 🔻	MC SW Overview 🗸	Difference Velocity
Control Parameter S	60					· ·
Control Parameter S						
Advanced Settings		Save Color Set				Ok Cancel
▷ Errors & Warnings	40	40)
▷ E Protected Technology I			1			
▷ · E LinUDP Intf N Variables				^		
			· · · · · /			
Default	20	20	V			

Abbildung 15: Konfiguration der Aufzeichnungskanäle

Unter dem Tab "General" befinden sich die zentralen Optionen, um den Messkanälen die gewünschten Variablen zur Aufzeichnung zuzuweisen. Weiterhin können Sie die Aufzeichnungsdauer (Recording Time) eingeben. Verwenden Sie für die Regleroptimierung den Erfassungsmodus "Single Shot". Wenn Sie das Konfigurationsfenster mit OK schliessen, können Sie die Aufzeichnung durch drücken des grünen Pfeils starten.

Nach der Aufzeichnung können Sie mit dem Symbol "Fit View" (Blauer Pfeil) die Darstellung automatisch skalieren lassen

Abbildung 16: Einsatz der beiden Messcursor

Für Auswertungszwecke können Sie bis zu zwei Messcursor einblenden. Direkt neben den jeweiligen Symbolen für die Einblendung finden Sie die Zeit der X-Achse des jeweiligen Cursors. Durch Verschieben der Cursorlinie können Sie die Kurve auswerten. Der korrespondierende Wert der Y-Achse finden Sie unter der Aufzeichnung in der Legende. Sind beide Cursor in Betrieb, wird auch eine automatische Zwischenverrechnung gemacht. Einzelne Kanäle können aus oder eingeschaltet werden (Ch1...Chx), um z.B. die Übersichtlichkeit bei der Auswertung zu verbessern.

Notize	n
--------	---

Kontakt & Support

SCHWEIZ	NTI AG Bodenaeckerstr. 2 CH-8957 Spreitenbach		
	Verkauf & Administration:	+41-(0)56-419 91 91 office@linmot.com	
	Tech. Support:	+41-(0)56-544 71 00 support@linmot.com	
		http://www.linmot.com/support	
	Tech. Support (Skype):	skype:support.linmot	
	Fax: Web:	+41-(0)56-419 91 92 http://www.linmot.com/	
USA	LinMot USA Inc. 204 E Morrissey Dr. Elkhorn, WI 53121 USA		
	Verkauf & Administration:	877-546-3270 262-743-2555	
	Tech. Support:	877-804-0718 262-743-1284 <u>usasupport@linmot.com</u>	

Fax:

E-Mail: Web: 800-463-8708 262-723-6688

usasales@linmot.com http://www.linmot-usa.com/

Bitte besuchen Sie http://www.linmot.com/de/kontakt um einen Distributor in Ihrer Nähe zu finden.

Smart solutions are...

