

ENG

# Installation Guide Linear Motors P10-70-SSC / P10-70-SSC-Dxx





## Content

| 1 | Gene  | eral information                                                            | . 4 |
|---|-------|-----------------------------------------------------------------------------|-----|
| 1 | .1    | Introduction                                                                | . 4 |
| 1 | .2    | Explanation of symbols                                                      | . 4 |
| 1 | .3    | Qualified personnel                                                         | . 4 |
| 1 | .4    | Liability                                                                   | . 4 |
| 1 | .5    | Copyright                                                                   | . 4 |
| 2 | Safe  | ty instructions                                                             | . 5 |
| 3 | Insta | Illation instructions                                                       | . 7 |
| 3 | .1    | Operating conditions                                                        | . 7 |
| 3 | .2    | Instructions for installing the linear motor                                | . 7 |
| 3 | .3    | Mounting the stator                                                         | . 8 |
| 3 | .4    | Mounting the payload to the slider                                          | . 8 |
| 3 | .5    | "Moving slider" installation                                                | 10  |
| 3 | .6    | "Moving stator" installation                                                | 10  |
|   | 3.6.1 | Assembling instruction                                                      | 11  |
| 3 | .7    | Minimum distance from slider                                                | 13  |
|   | 3.7.1 | Minimum distance from slider to slider                                      | 13  |
|   | 3.7.2 | Minimum distance from slider to metallic parts                              | 13  |
| 4 | Fluic | I cooling                                                                   | 14  |
| 4 | .1    | Design of water cooling                                                     | 14  |
|   | 4.1.1 | Determination of the max. possible amount of cont. power dissipation Pv_Max | 15  |
|   | 4.1.2 | Determination of water flow Q                                               | 16  |
|   | 4.1.3 | Determination of water pressure $\Delta$ p                                  | 17  |
| 4 | .2    | Corrosion protection                                                        | 17  |
| 4 | .3    | Mounting                                                                    | 17  |
| 5 | Elect | trical connection                                                           | 18  |
| 5 | .1    | Technical Data of Motor Cables                                              | 18  |
| 5 | .2    | Stator connector assignment                                                 | 19  |
|   | 5.2.1 | Power Connector                                                             | 19  |
| _ | 5.2.2 | Encoder Connector                                                           | 20  |
| 5 | .3    | Attaching the cable shielding                                               | 22  |
| 5 | .4    | Connectors                                                                  | 22  |
| 6 | Acce  | essories                                                                    | 23  |
| 6 | .1    | Motor Cables for use with LinMot Drives                                     | 23  |
| 6 | .2    | Motor Cables for use with third-party Drives                                | 24  |
| 6 | .3    | Mounting flange                                                             | 25  |
| 6 | .4    |                                                                             | 26  |
|   | 6.4.1 | General Information                                                         | 26  |
| ~ | 6.4.2 | Mounting                                                                    | 26  |
| 6 | .5    | Slider mounting Kits                                                        | 29  |
|   | 6.5.1 | Fixed bearing                                                               | 29  |
|   | 6.5.2 | Floating bearing                                                            | 29  |

# LinMot®

ENG

| 7  | Ν   | Nain  | tenance and test instructions            | 31 |
|----|-----|-------|------------------------------------------|----|
|    | 7.1 |       | Stator checking                          | 31 |
|    | 7.2 |       | Maintenance of linear motors             | 32 |
|    | 7   | 7.2.1 | Maintenance schedule                     | 32 |
|    | 7   | 7.2.2 | Cleaning                                 | 32 |
|    | 7   | 7.2.3 | Cleaning agent                           | 32 |
| 8  | S   | Stora | age, transport, installation altitude    | 33 |
| 9  | C   | Dime  | ensions                                  | 33 |
|    | 9.1 |       | Stator                                   | 33 |
|    | 9   | 9.1.1 | P10-70x160U-BD-SSC                       | 33 |
|    | 9   | 9.1.2 | P10-70x240U-BD-SSC                       | 34 |
|    | 9   | 9.1.3 | P10-70x320U-BD-SSC                       | 34 |
|    | 9.2 |       | Slider                                   | 35 |
| 10 | )   | In    | ternational Certificates                 | 36 |
| 11 |     | U     | Certificate                              | 38 |
| 12 | 2   | Εl    | J Declaration of Conformity CE-Marking   | 42 |
| 13 | }   | U     | K Declaration of Conformity UKCA-Marking | 43 |

## 1 General information

## 1.1 Introduction

This manual includes instructions for the assembly, installation, maintenance, transport, and storage of linear motors. The document is intended for electricians, mechanics, service technicians, and warehouse staff. Be sure to observe the general safety instructions as well as those in each chapter at all times. Keep this manual accessible to the assigned staff.

## **1.2** Explanation of symbols



Triangular warning symbols warn against a danger.



Round command symbols tell what to do.

## 1.3 Qualified personnel

All work such as transport, installation, commissioning and service is only allowed to be carried out by qualified personnel. Qualified personnel in the sense of the safety instructions in this documentation are persons who are familiar with the transport, installation, assembly, commissioning and operation of the product and who have the appropriate qualifications.

This manual must be read carefully before transport, installation, commissioning, service and all safetyrelated information must be adhered to.

## 1.4 Liability

NTI AG (as manufacturer of LinMot linear motors and MagSpring products) excludes all liability for damages and expenses caused by incorrect use of the products. This also applies to false applications, which are caused by NTI AG's own data and notes, for example in the course of sales, support or application activities. It is the sole responsibility of the user to check the information and information provided by NTI AG regarding their safety-relevant correctness. In addition, the entire responsibility for safety-related product functionality lies exclusively with the user.Product warranties are void if products are used with stators, sliders, servo drives or cables not manufactured by NTI AG unless such use was specifically approved by NTI AG. NTI AG's warranty is limited to repair or replacement as stated in our standard warranty policy as described in our "terms and conditions" previously supplied to the purchaser of our equipment (please request copy of same if not otherwise available). Further reference is made to our general terms and conditions.

## 1.5 Copyright

This work is protected by copyright.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, microfilm, storing in an information retrieval system, not even for training purposes, or translating, in whole or in part, without the prior written consent of NTI AG. LinMot® is a registered trademark of NTI AG.



**ENG** 



#### Contusions

Sliders contain neodynium magnets and have a strong attractive force. Careless handling could cause fingers or skin to become pinched between two sliders. This may lead to contusions, bruises, and bone fractures. When handling sliders, wear thick protective gloves and keep a minimum distance between

sliders. Refer to the "Minimum distance from slider" section for minimum distance.

To reduce the risk of injury, never more than one slider should be held or transported by the same person without packaging.



#### Pacemaker / Implanted heart defibrillator

Sliders could affect the functioning of pacemakers and implanted heart defibrillators. For the duration of a strong approach to a magnetic field, these devices switch into test mode and will not function properly.

- If you wear one of those devices keep the following minimum distances between the pacemaker / defibrillator and slider:
  - Min. 250 mm (10") for slider Ø 27 mm and 28 mm (PL01-27 / 28 / PL10-28)
  - Min. 150 mm (6") for slider Ø 19 mm and 20 mm (PL01-19 / 20)
  - Min. 100 mm (4") for slider Ø 12 mm (PL01-12)
- Inform others who wear these devices to comply with these minimum distances!



#### **Caution - Risk of Electric Shock !**

Before working, make sure that there are no high voltages.



#### Fast-moving machine parts

The sliders of LinMot linear motors are fast-moving machine parts. All necessary precautions must be taken to prevent persons approaching the moving elements during operation (provide covers, guards, etc.).



#### Automatic restart

The motors can start automatically under certain cricumstances! If necessary, a corresponding warning symbol must be provided and protection against entering the hazardous area or a suitable safe electronic disconnection must be provided!



#### Risk of injury due to a defect or fault

For areas where a defect or fault can result in substantial property damage or even serious personal injury, additional external precautions must be taken or devices must be installed to ensure safe operation even if a defect or fault occurs (eg. suitable safe electronic disconnection, mechanical interlocks, barriers, etc.).



#### **Magnetic field**

Magnets integrated in the sliders produce a strong magnetic field. They could damage TVs, laptops, computer hard drives, credit and ATM cards, data storage media, mechanical watches, hearing aids, and speakers.

- Keep magnets away from devices and objects that could be damaged by strong magnetic fields.
- For the above mentioned objects, keep a minimum distance as described in the "Pacemaker / implanted defibrillator" section.
- For non-anti-magnetic watches, keep the double minimum distance.





#### Combustibility

When machining magnets, the drilling dust could easily ignite. Machining the sliders and the magnets they contain is not permitted.



#### Burn hazard

The sliders of LinMot motors can reach temperatures of 80 °C, which may cause burns upon contact.



#### Grounding

All metal parts that are exposed to contact during any user operation or servicing and likely to become energized shall be reliably connected to the means for grounding.



#### Mechanical handling

Neodymium magnets are brittle and heat-sensitive. Machining the sliders and the magnets they contain is not permitted.

- Colliding magnets could crack. Sharp splinters could be catapulted for several meters and cause eye injury.
- By machining the sliders, heat would result which demagnetises the magnets.



## Slider

Linear motor sliders consist of a high-precision, thin-walled stainless steel tube in which the neodymium magnets are housed. The LinMot sliders should be handled with care. Avoid contact with other sliders or iron parts as this can damage the magnets and the slider surface. Do not grip the sliders with pliers, as this can also damage the surface. Do not use sliders which are already damaged on the surface (scratches, deformation, etc.). This can cause further damage to the stator.



#### Effects on people

According to the current level of knowledge, magnetic fields of permanent magnets do not have a measurable positive or negative effect on people. It is unlikely that permanent magnets constitute a health risk, but it cannot be ruled out entirely.

- For your own safety, avoid constant contact with magnets.
- Store large magnets at least one meter away from your body.



#### **Temperature resistance**

Keep slider away from unshielded flame or heat. Temperature above 120°C will cause demagnetization.

## **3** Installation instructions

## 3.1 Operating conditions

- Maximum ambient temperature limits are 10 °C...80 °C.
- Internal temperature sensor error occurs at 90 °C.
- The linear motor should not be operated under water.

## 3.2 Instructions for installing the linear motor



Please attend to the safety instructions in chapter 2 during the assembling!



1. Install the mounting flange at the front.

LinMot®



2. Install the mounting flange at the rear.

3. Clean the slider with a paper towel.



6



## 3.3 Mounting the stator



The motor is levelled and fixed to the ground using the holes in the flange foot. The hole pattern is shown in section 9.1 "Stator Dimensions".

## 3.4 Mounting the payload to the slider

The load is mounted as a fixed bearing using spherical washers and conical seats (see the section 6.3).



• To avoid shear force on slider and wear on stator, the payload has to be beared by a linear guide.

Slider back end (M8 internal thread) should not be used for load mounting.





0

When attaching the load, the wrench for tightening the load must be used only on the loadfacing side of the slider. Avoid torsional stress on slider (note the following figures).



**Incorrect mounting** Torsional stress on slider!



**Correct mounting** 

| Slider   | Thread                  | Max. torque for screw<br>(Dry) |
|----------|-------------------------|--------------------------------|
| 29 mm    | M 8 (Slider back end)   | 22.5 Nm                        |
| 20 11111 | M 10 (Slider front end) | 42 Nm                          |

nNoi

## 3.5 "Moving slider" installation



In a "moving slider" installation, the stator is fixed and the slider is the moving part.

The load, borne by a linear guide, is attached directly to the end of the slider. In order to compensate for misalignment, spherical axial bearings consisting of spherical washers and conical seats (see the section Slider mounting kits) are used to connect to the load. The mounting kit of slider and an oversized hole for the screw make it possible to adjust a radial and angle offset.



Mounted payload with radial and angle offset.

## 3.6 "Moving stator" installation



In "moving stator" applications, the slider is fixed and the stator is the moving part. The load is attached to the stator, which is mounted on a linear guide. In order to avoid an overconstrained bearing mount and compensate for alignment errors, the slider may be mounted on one end in a fixed bearing with a spherical axial bearing. On the opposite end, the slider is mounted in a floating bearing. Mounting kits are available for mounting the slider (see the section Slider mounting kits).



ENG

## 3.6.1 Assembling instruction



Please attend to the safety instructions in chapter 2 during the assembling!

If moving stator application is used, the minimum bending radius of the motor cable should be adhered to. See chapter Cable, section Technical Data.



1. Mount stator to its support bearing.



2. Placing a spacer.

Put a spacer (wood, plasic, aluminium with thickness 15 mm) between slider and linear guide. The spacer prevents injuries to the hands and damage to the slider surface!



3. Insert slider into stator.





After the installation of the slider a safety label must be placed close to the slider.

## 3.7 Minimum distance from slider

## 3.7.1 Minimum distance from slider to slider



The sliders are made of neodymium magnets and have a strong magnetic attraction. It must be kept a minimum distance between the sliders. This minimized the risk of bruising and secondly, the sliders do not influence each other through their magnetic fields.

| Type of slider                                            | PL01            | PL01-20 / PL01-19 | PL01-28 / PL01-27 | PL10-28         |
|-----------------------------------------------------------|-----------------|-------------------|-------------------|-----------------|
| PL01-12                                                   | 30 mm (1.18 in) |                   |                   |                 |
| PL01-20 / PL01-19                                         |                 | 50 mm (1.97 in)   |                   |                 |
| PL01-28 / PL01-27                                         |                 |                   | 80 mm (3.15 in)   |                 |
| PL10-28                                                   |                 |                   |                   | 70 mm (2.76 in) |
| The data are measured from slider center to slider center |                 |                   |                   |                 |

## 3.7.2 Minimum distance from slider to metallic parts



When installing linear motors in modules with metal parts near the slider, undesired forces can arise due to magnetic attraction or eddy currents. These generally manifest as erratic and jerky positioning, or reduced dynamics of the linear motor. In order to avoid this, minimum distances between the slider and any metal parts are to be observed whenever metal materials are used nearby.

| Linear<br>Motor | Minimum distance from slider surface<br>to ferromagnetic parts (iron, steel,<br>etc.) | Minimum distance from slider surface to<br>non-ferromagnetic metallic parts<br>(aluminum, bronze, stainless steel, etc.) |
|-----------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| P10-70x         | 20 mm                                                                                 | 10 mm                                                                                                                    |

## 4 Fluid cooling

With liquid cooling, the heat dissipated in the motor is carried away by the cooling medium (e.g. water). Compared to self-cooling, the continuous rated power of the motor is increased many times over.

## 4.1 Design of water cooling



With the fluid cooling, the coolant is passed through the cooling circuit of the motor flange. Starting from the adjusted mean coolant temperature T\_Water all other parameters of the cooling circuit may be dimensioned based on the diagrams referred to:

 $T\_Water \rightarrow Pv\_Max \rightarrow Q\_Water \rightarrow \Delta p$ 

The design is illustrated by an example in the following.

#### 4.1.1 Determination of the max. possible amount of cont. power dissipation Pv\_Max

First, the average temperature of the cooling water is set. The supply temperature will be slightly lower and the return temperature slightly higher. Depending on the motor and the selected water temperature, the maximum motor losses that need to be dissipated by the cooling result.





- If the temperature of the cooling liquid is chosen to be lower than the ambient temperature, there is a risk of condensation.
- When used and stored in a frost-prone area, corrosion protection (e.g. Clariant) has to be added.

LinMot®

## 4.1.2 Determination of water flow Q

Depending on the selected difference between return and flow temperature, the required water flow rate is calculated from the max. power loss determined in 4.1.1.





To achieve a very regular cooling of the motor, the max. difference between flow and return temperature should not exceed 10 ° C.

InV/Oi

#### 4.1.3 Determination of water pressure $\Delta p$

To achieve the water flow rate determined in 4.1.2, the hydraulic resistance of the cooling circuit in the motor must be overcome. The maximum pressure difference across the motor's water connections can be determined from the following diagram, which depends not only on the flow rate but also on the type of motor.



## 4.2 Corrosion protection

It is advised to add a corrosion protection into the cooling medium (water). A suitable agent can be, for example, Protectogen C Aqua by Clariant. Information of the mixing ratio between the cooling medium and the corrosion protection agent can be taken from the manufacturer's instructions.

- Mixing of various corrosion protection agents is to be avoided.
- Corrosion protection products must be matched to the materials of the cooling circuit (see table of materials in the cooling circuit).

## 4.3 Mounting



The supply or conduction of the cooling medium to the stator is carried out via two connecting thread (see illustration above). The connection can be realized by M5 push-in fittings.



ENG

## **5** Electrical connection



Do not connect or disconnect motor when there is power on the servo drive. Use only double-shielded original LinMot cable. Cables from other sources must be checked precisely before commissioning. Incorrect connections can destroy the drive and stator.

5.1 Technical Data of Motor Cables

For the linear motors of the P10-70 series, different cable types are used for the power and signal supply, depending on the use of the drive type (LinMot or third-party manufacturer). All cables are high-flex cables (suitable for trailing chains) and are used for both fixed and moving applications.

|                                                                                | Power                                    | <sup>.</sup> cable                 | Encoder cable                     |                                   |  |
|--------------------------------------------------------------------------------|------------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|--|
| Туре                                                                           | pe KPS15-04 KPS15-04/04                  |                                    | KSS05-02/08                       | KSS05-02/13                       |  |
| Application for                                                                | LinMot drives +<br>Third-party drives    | Third-party drives                 | LinMot drives                     | Third-party drives                |  |
| Minimum<br>bending radius<br>for fixed<br>installation                         | 50 mm<br>(2 in)                          | 60 mm<br>(2.36 in)                 | 50 mm<br>(2 in)                   | 45 mm<br>(1.75 in)                |  |
| Minimum<br>bending radius<br>when moving                                       | 100 mm<br>(4 in)<br>No torsion           | 120 mm<br>(4.72 in)<br>No torsion  | 100 mm<br>(4 in)<br>No torsion    | 90 mm<br>(3.54 in)<br>No torsion  |  |
| Max. Cable<br>length                                                           | 30 m (can be limited by the servo drive) |                                    |                                   |                                   |  |
| Approval                                                                       | UL / CSA 1000V                           | UL / CSA 1000V /<br>300V           | UL / CSA 300V                     | UL / CSA 30V                      |  |
| Material                                                                       | Wire isolation: TPE<br>Jacket: PUR       | Wire isolation: TPE<br>Jacket: PUR | Wire isolation:TPE<br>Jacket: PUR | Wire isolation: PE<br>Jacket: PUR |  |
| Oil resistance                                                                 | sehr gut                                 | sehr gut                           | sehr gut                          | sehr gut                          |  |
| Chemical<br>resistance (to<br>acids, alkalis,<br>solvents,<br>hydraulic fluid) | good                                     | good                               | good                              | good                              |  |
| Outdoor<br>durability                                                          | very good                                | very good                          | very good                         | very good                         |  |
| Flammability                                                                   | flame retardant                          | flame retardant                    | flame retardant                   | flame retardant                   |  |

## 5.2 Stator connector assignment



Do not connect or disconnect motor when there is power on the servo drive. Use only original LinMot cable. Cables from other sources must be checked precisely before commissioning. Incorrect connections can destroy the drive and stator.

InVlof

ENG

#### 5.2.1 Power Connector

Shielded motor cable  $d = 1.5 \text{ mm}^2$ 



| Pin | P10-70-SSC | P10-70-SSC-D04 | P10-70-SSC-D05 | Wire Color Motor Cable |
|-----|------------|----------------|----------------|------------------------|
| 1   | Phase U    | Phase U        | Phase U        | red                    |
| 2   | PE         | PE             | PE             | yellow-green           |
| 3   | Phase W    | Phase W        | Phase W        | black                  |
| 4   | Phase V    | Phase V        | Phase V        | blue                   |
| А   | n.c.       | Pt1000+ 1)     | PTC+ 1)        | purple                 |
| В   | n.c.       | Pt1000- 1)     | PTC- 1)        | grey                   |
| С   | n.c.       | n. c.          | n. c.          | yellow                 |
| D   | n.c.       | n. c.          | n. c.          | brown                  |

| Pin | P10-70-SSC-D24<br>P10-70-SSC-D24S | P10-70-SSC-D25<br>P10-70-SSC-D25S | P10-70-SSC-D26 | Wire Color Motor Cable |
|-----|-----------------------------------|-----------------------------------|----------------|------------------------|
| 1   | Phase U                           | Phase U                           | Phase U        | red                    |
| 2   | PE                                | PE                                | PE             | yellow-green           |
| 3   | Phase W                           | Phase W                           | Phase W        | black                  |
| 4   | Phase V                           | Phase V                           | Phase V        | blue                   |
| А   | Pt1000+ 1)                        | PTC+ 1)                           | Do not connect | purple                 |
| В   | Pt1000- 1)                        | PTC- <sup>1)</sup>                | Do not connect | grey                   |
| С   | n.c.                              | n. c.                             | n. c.          | yellow                 |
| D   | n.c.                              | n. c.                             | n. c.          | brown                  |

| Pin | P10-70-SSC-D34        | Wire Color Motor Cable |
|-----|-----------------------|------------------------|
| 1   | Phase U               | red                    |
| 2   | PE                    | yellow-green           |
| 3   | Phase W               | black                  |
| 4   | Phase V               | blue                   |
| А   | Pt1000+ <sup>1)</sup> | purple                 |
| В   | Pt1000- 1)            | grey                   |
| С   | n.c.                  | yellow                 |
| D   | n.c.                  | brown                  |

<sup>1)</sup> The temperature evaluation circuit must have the same galvanic reference potential as the encoder circuit (supply). It should therefore be connected to the supply GND. For correct evaluation, the connection potentials of the emulated temperature sensor must be in the range of the supply potentials. Valid temperature values can only be measured 50ms after the encoder supply is applied. In currentless state a resistance of 200kOhm is measured between pin A and B. The maximum voltage between pin A and B must not exceed 16VDC. The maximum current is 15mA.

InMot

## 5.2.2 Encoder Connector

Shielded twisted pair Encoder Cable d =  $0.5 \text{ mm}^2 / 0.25 \text{ mm}^2$ 



| Pin       | P10-70-SSC              | Wire Color Motor Cable |
|-----------|-------------------------|------------------------|
| 1         | +5VDC 1)                | red                    |
| 2         | GND                     | black                  |
| 3         | Sense +5V <sup>1)</sup> | white                  |
| 4         | Sense GND <sup>1)</sup> | brown                  |
| 5         | Motor Link C +          | pink                   |
| 6         | Motor Link C -          | grey                   |
| 7         | Sin +                   | yellow                 |
| 8         | Sin -                   | orange                 |
| 9         | Cos +                   | green                  |
| 10        | Cos -                   | blue                   |
| 11 bis 17 | n. c.                   | -                      |

<sup>1)</sup> The supply voltage at 5V sense supply is approx. 6V. Newer motors are provided with a modified power supply, that does not require sense lines any more. In that case, a supply voltage of 6...9V is permitted.

| Pin | P10-70-SSC-D04                     | P10-70-SSC-D05               | Wire Color Motor<br>Cable |
|-----|------------------------------------|------------------------------|---------------------------|
| 1   | 313 VDC                            | 313 VDC                      | white                     |
| 2   | GND                                | GND                          | brown                     |
| 3   | Vcc Sense (optional)               | Vcc Sense (optional)         | green                     |
| 4   | GND Sense (optional)               | GND Sense (optional)         | yellow                    |
| 5   | Do not connect                     | Do not connect               | _                         |
| 6   | Do not connect                     | Do not connect               | _                         |
| 7   | Sin +                              | Sin +                        | grey                      |
| 8   | Sin -                              | Sin -                        | pink                      |
| 9   | Cos +                              | Cos +                        | blue                      |
| 10  | Cos -                              | Cos -                        | red                       |
| 11  | Ref +                              | Ref +                        | black                     |
| 12  | Ref -                              | Ref -                        | violett                   |
| 13  | Hall U                             | Hall U                       | grey-red                  |
| 14  | Hall V                             | Hall V                       | red-blue                  |
| 15  | Hall W                             | Hall W                       | white-green               |
| 16  | Temp+ (Pt1000 Char.) 2)            | Temp+ (PTC 400/20k Char.) 2) | yellow-brown              |
| 17  | Temp- (Pt1000 Char.) <sup>2)</sup> | Temp- (PTC 400/20k Char.) 2) | white-yellow              |

<sup>2)</sup> The temperature evaluation circuit must have the same galvanic reference potential as the encoder circuit (supply). It should therefore be connected to the supply GND. For correct evaluation, the connection potentials of the emulated temperature sensor must be in the range of the supply potentials. Valid temperature values can only be measured 50ms after the encoder supply is applied. In the currentless state, a resistance of 200kOhm is measured between pin 16 and 17 is measured. The maximum voltage between pin 16 and 17 must not exceed 16VDC. The maximum current is 15mA.

## **Installation Guide Linear Motors**

## LinMot®

ENG

| Pin | P10-70-SSC-D24<br>P10-70-SSC-D24S  | P10-70-SSC-D25<br>P10-70-SSC-D25S          | P10-70-SSC-D26                             | Wire Color<br>Motor Cable |
|-----|------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------|
| 1   | 313 VDC                            | 313 VDC                                    | 313 VDC                                    | white                     |
| 2   | GND                                | GND                                        | GND                                        | brown                     |
| 3   | Vcc Sense (optional)               | Vcc Sense (optional)                       | Vcc Sense (optional)                       | green                     |
| 4   | GND Sense (optional)               | GND Sense (optional)                       | GND Sense (optional)                       | yellow                    |
| 5   | Do not connect                     | Do not connect                             | Do not connect                             | _                         |
| 6   | Do not connect                     | Do not connect                             | Do not connect                             | _                         |
| 7   | А                                  | А                                          | А                                          | grey                      |
| 8   | / A                                | / A                                        | / A                                        | pink                      |
| 9   | В                                  | В                                          | В                                          | blue                      |
| 10  | / B                                | / B                                        | / B                                        | red                       |
| 11  | Ref                                | Ref                                        | Ref                                        | black                     |
| 12  | / Ref                              | / Ref                                      | / Ref                                      | violett                   |
| 13  | Hall U                             | Hall U                                     | Hall U                                     | grey-red                  |
| 14  | Hall V                             | Hall V                                     | Hall V                                     | red-blue                  |
| 15  | Hall W                             | Hall W                                     | Hall W                                     | white-green               |
| 16  | Temp+ (Pt1000 Char.) <sup>1)</sup> | Temp+ (PTC 400/20k<br>Char.) <sup>1)</sup> | Temp+ (PTC 400/20k<br>Char.) <sup>1)</sup> | yellow-brown              |
| 17  | Temp- (Pt1000 Char ) <sup>1)</sup> | Temp- (PTC 400/20k                         | Do not connect                             | white-vellow              |

| Pin | P10-70-SSC-D34          | Aderfarbe Motorkabel |
|-----|-------------------------|----------------------|
| 1   | 313 VDC                 | white                |
| 2   | GND                     | brown                |
| 3   | Vcc Sense (optional)    | green                |
| 4   | GND Sense (optional)    | yellow               |
| 5   | Do not connect          | -                    |
| 6   | Do not connect          | -                    |
| 7   | SO (Slave out)          | grey                 |
| 8   | / SO (Slave out)        | pink                 |
| 9   | Do not connect          | _                    |
| 10  | Do not connect          | -                    |
| 11  | MA (Master clock)       | black                |
| 12  | / MA (Master clock)     | violett              |
| 13  | Hall U                  | grey-red             |
| 14  | Hall V                  | red-blue             |
| 15  | Hall W                  | white-green          |
| 16  | Temp+ (Pt1000 Char.) 1) | yellow-brown         |
| 17  | Temp- (Pt1000 Char.) 1) | white-yellow         |

Char.)<sup>1)</sup>

<sup>1)</sup> The temperature evaluation circuit must have the same galvanic reference potential as the encoder circuit (supply). It should therefore be connected to the supply GND. For correct evaluation, the connection potentials of the emulated temperature sensor must be in the range of the supply potentials. Valid temperature values can only be measured 50ms after the encoder supply is applied. In the currentless state, a resistance of 200kOhm is measured between pin 16 and 17 is measured. The maximum voltage between pin 16 and 17 must not exceed 16VDC. The maximum current is 15mA.

**ENG** 



The power cable is supplied with a copper shielding (see illustration above). This prevents electrical and / or magnetic fields. The shielded part of the cable must be grounded via a connection to the back wall of the switchboard. The shielding has to be mounted holohedral to the connection part (see scheme above). The shield connection terminal block is offered as an accessory for power cables and must be ordered separately (Item-No. 0150-3631) However, the kind of attaching the cable shielding generally depends on the system of the switchboard manufacturer.

## 5.4 Connectors

For a complete encapsulation the standard motor connector is welded to the housing of the stator. The connector is designed for tightening and vertically aligned (see the section "Stator dimensions"). Motor connector and cable connector are firmly bolted together. Dimensions and tightening torque are shown in the following figure.





## 6 Accessories

## 6.1 Motor Cables for use with LinMot Drives





C1400



E1400

For applications where IP69k protection is not required, the motors can also be operated with P10-70 standard cables and connectors.

#### **Power Cables**

| ltem              | Description                                        | Item-No.  |
|-------------------|----------------------------------------------------|-----------|
| KPS15-04-L/Q-SSC- | Power Trailing Chain Cable L/Q-SSC-, Custom length | 0150-3858 |
| KPS15-04-B/Q-SSC- | Power Trailing Chain Cable B/Q-SSC-, Custom length | 0150-3863 |

#### **Encoder Cables**

| Item                          | Description                                            | Item-No.  |
|-------------------------------|--------------------------------------------------------|-----------|
| KSS05-02/08-D15(f)-45°/J-SSC- | Encoder Trailing Chain Cable D15/J-SSC-, Custom length | 0150-3864 |

#### Connectors

| Item     | Description              | Item-No.  |
|----------|--------------------------|-----------|
| MC10-L/m | Connector Power E1400/X2 | 0150-3382 |

## **Installation Guide Linear Motors**

## LinMot®

| MC01-D15/f                                           | Motor Connector D15 (f)         | 0150-3136 |
|------------------------------------------------------|---------------------------------|-----------|
| MC10-Q/f-IP69K-SSC Motor Connector Q/f, IP69K, SSC 0 |                                 |           |
| MC10k-J/f-IP69K-SSC                                  | Motor Connector J/f, IP69K, SSC | 0160-1167 |

## 6.2 Motor Cables for use with third-party Drives



**3rd party Drive** 



For applications where IP69k protection is not required, the motors can also be operated with P10-70 standard cables and connectors.

#### **Order Overview**

| Dxx  | Power Cable   | Encoder Cable | Position<br>Feedback | Temperature<br>Feedback via<br>Power Cable | Temperature<br>Feedback via<br>Encoder Ca. | Hallswitch<br>Signals | Ref.<br>Signal |
|------|---------------|---------------|----------------------|--------------------------------------------|--------------------------------------------|-----------------------|----------------|
| D04  | KPS15-04/Q    | KSS05-02/13/J | Sin/Cos 1Vpp         |                                            | Pt1000                                     | Hall U/V/W            | Ref            |
| D04  | KPS15-04/04/Q | KSS05-02/13/J | Sin/Cos 1Vpp         | Pt1000                                     | Pt1000                                     | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| DOF  | KPS15-04/Q    | KSS05-02/13/J | Sin/Cos 1Vpp         |                                            | PTC                                        | Hall U/V/W            | Ref            |
| 005  | KPS15-04/04/Q | KSS05-02/13/J | Sin/Cos 1Vpp         | PTC                                        | PTC                                        | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D24  | KPS15-04/Q    | KSS05-02/13/J | A/B 1µm              |                                            | Pt1000                                     | Hall U/V/W            | Ref            |
| D24  | KPS15-04/04/Q | KSS05-02/13/J | A/B 1µm              | Pt1000                                     | Pt1000                                     | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D249 | KPS15-04/Q    | KSS05-02/13/J | A/B 5µm              |                                            | Pt1000                                     | Hall U/V/W            | Ref            |
| D243 | KPS15-04/04/Q | KSS05-02/13/J | A/B 5µm              | Pt1000                                     | Pt1000                                     | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D25  | KPS15-04/Q    | KSS05-02/13/J | A/B 1µm              |                                            | PTC                                        | Hall U/V/W            | Ref            |
| D25  | KPS15-04/04/Q | KSS05-02/13/J | A/B 1µm              | PTC                                        | PTC                                        | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D259 | KPS15-04/Q    | KSS05-02/13/J | A/B 5µm              |                                            | PTC                                        | Hall U/V/W            | Ref            |
| D233 | KPS15-04/04/Q | KSS05-02/13/J | A/B 5µm              | PTC                                        | PTC                                        | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D26  | KPS15-04/Q    | KSS05-02/13/J | A/B 1µm              |                                            | PTC SE                                     | Hall U/V/W            | Ref            |
| D20  | KPS15-04/04/Q | KSS05-02/13/J | A/B 1µm              | PTC SE                                     | PTC SE                                     | Hall U/V/W            | Ref            |
|      |               |               |                      |                                            |                                            |                       |                |
| D34  | KPS15-04/Q    | KSS05-02/13/J | BiSS-C               |                                            | Pt1000                                     | Hall U/V/W            |                |
| 034  | KPS15-04/04/Q | KSS05-02/13/J | BiSS-C               | Pt1000                                     |                                            | Hall U/V/W            |                |

#### **Power Cables**

| ltem               | Description                                             | Item-No.  |
|--------------------|---------------------------------------------------------|-----------|
| KPS15-04/Q-SSC-    | Power Trailing Chain Cable P10-70SSC-Dxx, Custom length | 0150-6127 |
| KPS15-04/04/Q-SSC- | Power Trailing Chain Cable P10-70SSC-Dxx, Custom length | 0150-6128 |

## LinMot®

ENG

| Item               | Description                                          | Item-No.  |  |
|--------------------|------------------------------------------------------|-----------|--|
| KSS05-02/13/J-SSC- | Encoder Trailing Chain Cable ./J-SSC-, Custom length | 0150-3866 |  |

Connectors

| Item               | Description                     | Item-No.  |
|--------------------|---------------------------------|-----------|
| MC10-Q/f-IP69K-SSC | Motor Connector Q/f, IP69K, SSC | 0150-1166 |
| MC10-J/f-IP69K-SSC | Motor Connector J/f, IP69K, SSC | 0150-1167 |

## 6.3 Mounting flange



The stainless steel mounting flange is attached to the front and rear of the stator. 4 hexagon bolts M6 x 25 are supplied for this purpose. A wiper ring is also integrated into the mounting flange. This ensures that the inside of the stator remains free of dirt.

To replace the wiper ring, this article can also be ordered separately.

#### **Ordering information**

| Item               | Description                              | Item-No.  |
|--------------------|------------------------------------------|-----------|
| PB13-70x17-SSC     | Mounting flange with wiper and A4 screws | 0150-3877 |
| PAW01-28-BL-HPU-Lf | Wiper blue HPU low friction              | 0160-3432 |

ENG

## 6.4 Bearing kit

### 6.4.1 General information

For fast, uncomplicated maintenance, these types of motors are equipped with replaceable slider bearings. The integrated sliding bearings are east to replace in a few manual steps.

| Item              | Description                                   | Item-No.  |
|-------------------|-----------------------------------------------|-----------|
| PB10-70x160-SSC-D | Bearing kit for PS10-70x160-SSC (dry bearing) | 0150-3853 |
| PB10-70x240-SSC-D | Bearing kit for PS10-70x240-SSC (dry bearing) | 0150-3854 |
| PB10-70x320-SSC-D | Bearing kit for PS10-70x320-SSC (dry bearing) | 0150-3855 |

#### 6.4.2 Mounting



#### 1. Remove the slider.

Pull the slider completely out of the stator.

Large magnetic attraction forces (Observe warning notice from page 5)! If necessary, cover nearby ironwork with nonmagnetic spacers (e.g. 20mm wooden board).



**2.** Dismantle the front mounting flange. Loosen screws and remove flange.



**3.** Dismantle rear mounting flange. Loosen screws and remove flange.

# LinMot®

ENG

- **4.** Remove bearing tube. Loosen the screws and pull out the bearing tube on the rear side.



5. Remove the front end piece. Loosen the screws and remove the end piece.



6. Mount a new bearing tube Insert the seal into the bearing tube groove and slide the bearing tube into the stator rear side. Then screw the bearing tube.

Tightening torque: 2.4 Nm



7. **Mount a new end piece.** Insert the seal into the groove and attach the end piece to the front of the stator. Then screw the end piece.

Tightening torque 2.4 Nm

## **Installation Guide Linear Motors**





8. Mount the front mounting flanges. Screw the mounting flange.

Tightening torque:

6 Nm

ENG



Mount the rear mounting flanges. 9. Screw the mounting flange.

Tightening torque: 6 Nm



10. Clean the slider with a paper towel.



11. Insert the slider in the defined direction (see Assembly step 12.).





- Slider front end: M10 thread + cut-in
- **12.** Checking the installed direction of slider After the installation, the front end of the slider with M 10 thread and cut-in is located at the opposite side of the stator from the cable exit.



Slider back end should not be used for load mounting!

## 6.5 Slider mounting kits

## 6.5.1 Fixed bearing



Slider mounting kit consists of a spring washer, a pair of spherical washers, and a pair of conical seats. It allows the slider to be fixed in the direction of motion. It also helps to compensate for radial and angle offset.



Material

Spherical washer / conical seat: case hardened steel

| ltem                        | Item No.  | Slider | Thread | d1                 | d2               | d3               | h                 |
|-----------------------------|-----------|--------|--------|--------------------|------------------|------------------|-------------------|
| PLF01-28<br>(Stainless-st.) | 0150-3297 | 28mm   | M10    | 10.5mm<br>(0.41in) | 12mm<br>(0.47in) | 21mm<br>(0.83in) | 6.5mm<br>(0.26in) |

## 6.5.2 Floating bearing



Floating bearing assembly that permits radial adjustment of slider position and permits a small amount of radial and axial movement.





Stainless steel 1.4305 Nitrile butadiene rubber Spring steel DIN17223

| ltem     | Item No.  | Slider | Thread | d1               | d2               | d3               | D4               | L                |
|----------|-----------|--------|--------|------------------|------------------|------------------|------------------|------------------|
| PLL01-28 | 0150-3094 | 28mm   | M5     | 28mm<br>(1.10in) | 32mm<br>(1.26in) | 40mm<br>(1.57in) | 48mm<br>(1.89in) | 20mm<br>(0.79in) |

LinMot®

## 7 Maintenance and test instructions

## 7.1 Stator checking

The following tables show the resistive value between the different connector pins for each stator type. If the value is not within a range of +/- 10% the stator may be damaged (temperature of the stator for all measurements: 20°C).

#### PS10-70x160U-BD...

| SSC-QJ (0150-2951)                                      | SSC-QJ-D24 (0150-5975)  | SSC-QJ-D25S (0150-5990)                                          |
|---------------------------------------------------------|-------------------------|------------------------------------------------------------------|
| SSC-QJ-D04 (0150-5960)                                  | SSC-QJ-D24S (0150-5980) | SSC-QJ-D26 (0150-5995)                                           |
| SSC-QJ-D05 (0150-5970)                                  | SSC-QJ-D25 (0150-5985)  | SSC-QJ-D34 (0150-6005)                                           |
| Phase U / Phase V                                       | Pin 1 / Pin 4           | 8.3 Ω @ 25 °C                                                    |
| Phase V / Phase W                                       | Pin 4 / Pin 3           | 8.3 Ω @ 25 °C                                                    |
| Phase W / Phase U                                       | Pin 3 / Pin 1           | 8.3 Ω @ 25 °C                                                    |
| Casing                                                  | Any phases / Casing     | > 200 MΩ @ 25 °C                                                 |
| Temp + / Temp -<br>Pt1000 + / Pt1000 -<br>PTC + / PTC - | Pin A / Pin B           | 200 kΩ @ 25 °C (supply off)<br>1097 Ω @ 25 °C<br>< 400 Ω @ 25 °C |

#### PS10-70x240U-BD...

| SSC-QJ (0150-2952)                                      | SSC-QJ-D24 (0150-5976)  | SSC-QJ-D25S (0150-5991)                                          |
|---------------------------------------------------------|-------------------------|------------------------------------------------------------------|
| SSC-QJ-D04 (0150-5961)                                  | SSC-QJ-D24S (0150-5981) | SSC-QJ-D26 (0150-5996)                                           |
| SSC-QJ-D05 (0150-5971)                                  | SSC-QJ-D25 (0150-5986)  | SSC-QJ-D34 (0150-6006)                                           |
| Phase U / Phase V                                       | Pin 1 / Pin 4           | 6.3 Ω @ 25 °C                                                    |
| Phase V / Phase W                                       | Pin 4 / Pin 3           | 6.3 Ω @ 25 °C                                                    |
| Phase W / Phase U                                       | Pin 3 / Pin 1           | 6.3 Ω @ 25 °C                                                    |
| Casing                                                  | Any phases / Casing     | > 200 MΩ @ 25 °C                                                 |
| Temp + / Temp -<br>Pt1000 + / Pt1000 -<br>PTC + / PTC - | Pin A / Pin B           | 200 kΩ @ 25 °C (supply off)<br>1097 Ω @ 25 °C<br>< 400 Ω @ 25 °C |

#### PS10-70x320U-BD...

| SSC-QJ (0150-2953)                                      | SSC-QJ-D24 (0150-5977)  | SSC-QJ-D25S (0150-5992)                                          |
|---------------------------------------------------------|-------------------------|------------------------------------------------------------------|
| SSC-QJ-D04 (0150-5962)                                  | SSC-QJ-D24S (0150-5982) | SSC-QJ-D26 (0150-5997)                                           |
| SSC-QJ-D05 (0150-5972)                                  | SSC-QJ-D25 (0150-5987)  | SSC-QJ-D34 (0150-6007)                                           |
| Phase U / Phase V                                       | Pin 1 / Pin 4           | 5.5 Ω @ 25 °C                                                    |
| Phase V / Phase W                                       | Pin 4 / Pin 3           | 5.5 Ω @ 25 °C                                                    |
| Phase W / Phase U                                       | Pin 3 / Pin 1           | 5.5 Ω @ 25 °C                                                    |
| Casing                                                  | Any phases / Casing     | > 200 MΩ @ 25 °C                                                 |
| Temp + / Temp -<br>Pt1000 + / Pt1000 -<br>PTC + / PTC - | Pin A / Pin B           | 200 kΩ @ 25 °C (supply off)<br>1097 Ω @ 25 °C<br>< 400 Ω @ 25 °C |

īnMot

## 7.2 Maintenance of linear motors

The person responsible for the operation of the motors must ensure that the specified maintenance work is carried out. The following maintenance schedule is designed for the operating conditions in the food industry with contact of liquid media. The inspection cycle is 2.5 million movement cycles or 1500 friction-kilometer.

#### 7.2.1 Maintenance schedule

| When                                                                         | What                         | Task                                                                                                                                                              |  |
|------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Every 2.5<br>million<br>movement<br>cycles or<br>1500 friction-<br>kilometer | Bearing tube<br>Wiper        | Check + Possibly replacing the tube and the wipers in case of visible wear. (See section 6.2)                                                                     |  |
|                                                                              | Slider                       | Check whether the slider surface is clean and not scratched.<br>Scratched sliders must be replaced, otherwise clean the<br>slider. (See instruction, section 3.2) |  |
|                                                                              | Electrical connection        | Tighten the electrical connection between cable and stator.<br>Tightening torque: 0.6 Nm (Q-, J-connector) according to<br>section 5.3 "Connector".               |  |
|                                                                              | Fluid cooling (if available) | Check whether the cooling circuit is permanently connected.                                                                                                       |  |
|                                                                              | Tightness                    | <ul> <li>Check whether the mounting flanges are firmly bolted to<br/>the stator without gap.</li> <li>Tightening torque:<br/>Cylinder screw M6 (6 Nm)</li> </ul>  |  |
|                                                                              | Ease of movement             | If friction is felt during movement, the motor must be stopped immediately.<br>Check the alignment of the load bearing and slider.                                |  |

## 7.2.2 Cleaning

- Pull the sliders carefully out of the stator.
   Attention!: Strong magnetic attraction forces (note safety instruction "contusions" on page 5.)! Use non-magnetic material (e.g. wood) to cover close-by iron constructions.
- Clean slider and stator with a soft disposable paper, ideally with the help of LU06 cleaning spray (or acetone or benzene). Available cleaners in the food industry may also be used. However, these should not leave any residues.
- Finally, slider should be inserted according to the chapter 3.2 "Instructions for installing the linear motor".

## 7.2.3 Cleaning agent

All LinMot stainless steel motors have a protection class of IP69K. Standard cleaning agents in food and pharmaceutical industries with usual concentration and amount, can be used for the cleaning. If necessary, compatibility with the bearing material (Polyamide) and the wiper material (H-ECOPUR) must be checked.

#### Ordering information

| Item                                                                                     | Description                          |  | Item-No.  |  |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------|--|-----------|--|--|--|
| LU06-250                                                                                 | Klüberfood NH1 4-002 Spray* (250 ml) |  | 0150-2394 |  |  |  |
| * LinMot Spray LU06 corresponds to KLÜBERFOOD NH1 4-002 which was developed for the food |                                      |  |           |  |  |  |
| processing indust                                                                        | processing industry.                 |  |           |  |  |  |

## 8 Storage, transport, installation altitude

• Sliders are to be stored and transported only in the plastic containers (with cardboard inlay) provided for this purpose, or already installed and secured in LinMot P stators.

*inMot*<sup>®</sup>

**ENG** 

- Remove the slider from this plastic containers only for assembling.
- The storage area must be dry, dust-free, frost-free and vibration-free.
- The relative air humidity should be less than 60 %.
- Prescribed storage temperature: -15 °C...70 °C
- The motor must be protected against extreme weather conditions.
- The air in the storage area must not contain any harmful gases.
- The max. installation altitude is 2'000 m (for higher values contact LinMot) above sea level. Beyond 1'000 m, a derating of 0.5% per 100 m must be taken into account on the rated force in the case of air cooling.

## 9 Dimensions

## 9.1 Stator

## 9.1.1 P10-70x160U-BD-SSC





# LinMot<sup>®</sup>

ENG

## 9.1.2 P10-70x240U-BD-SSC





## 9.1.3 P10-70x320U-BD-SSC





# LinMot®

ENG

## 9.2 Slider



#### Slider front end M 10 thread

| Item              | Item-No.  | Length L [mm / in] |
|-------------------|-----------|--------------------|
| PL10-28x390/340   | 0150-2194 | 390 / 15.35        |
| PL10-28x490/440   | 0150-2195 | 490 / 19.3         |
| PL10-28x590/540   | 0150-2196 | 590 / 23.42        |
| PL10-28x690/640   | 0150-2197 | 690 / 27.18        |
| PL10-28x790/740   | 0150-2198 | 790 / 31.11        |
| PL10-28x890/840   | 0150-2199 | 890 / 35.05        |
| PL10-28x990/940   | 0150-2203 | 990 / 39           |
| PL10-28x1190/1140 | 0150-2204 | 1190 / 46.87       |
| PL10-28x1390/1340 | 0150-2205 | 1390 / 54.75       |
| PL10-28x1590/1540 | 0150-2206 | 1590 / 62.62       |
| PL10-28x1790/1740 | 0150-2207 | 1790 / 70.5        |
| PL10-28x1990/1940 | 0150-2208 | 1990 / 78.38       |



## **10 International Certificates**

| Europe             | See chapter "EU Declaration of Conformity CE-Marking"   |
|--------------------|---------------------------------------------------------|
| UK                 | See chapter "UK Declaration of Conformity UKCA-Marking" |
| IECEE<br>CB SCHEME | Ref. Certif. Nr. CH-8521                                |
| USA / Canada       | File Number E354430<br>Refers to cURus marked motors    |



**ENG** 



P10-70-SSC / P10-70-SSC-Dxx

## **11 UL Certificate**

| Certificate Number<br>Report Reference               | UL-US-L354430-11-52105102-2<br>E354430-20150125                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date                                                 | 5-May-2021                                                                                                                                                                                                                                                                                                                                       |
| Issued to:                                           | NTI AG<br>Bodenaeckerstr 2 SPREITENBACH<br>Switzerland 8957                                                                                                                                                                                                                                                                                      |
| This is to certify that<br>representative samples of | NDMM2 - Incomplete Rotating Machines and Rotating<br>Machine Parts - Component                                                                                                                                                                                                                                                                   |
|                                                      | See Addendum Page for Product Designation(s).                                                                                                                                                                                                                                                                                                    |
|                                                      | Have been investigated by UL in accordance with the component requirements in the Standard(s) indicated on this Certificate. UL Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for installation ir complete equipment submitted for investigation to UL LLC. |
| Standard(s) for Safety:                              | UL 1004-1, 2nd Ed., Issue Date: 2012-09-19, Revision<br>Date: 2020-11-05                                                                                                                                                                                                                                                                         |
| Additional Information:                              | See the UL Online Certifications Directory at<br>https://ig.ulprospector.com for additional information                                                                                                                                                                                                                                          |

LinMot®

ENG

This *Certificate of Compliance* does not provide authorization to apply the UL Recognized Component Mark. Only the UL Follow-Up Services Procedure provides authorization to apply the UL Mark.

Only those products bearing the UL Recognized Component Mark should be considered as being UL Certified and covered under UL's Follow-Up Services.

of UL. For

Look for the UL Recognized Component Mark on the product.

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authori: contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

Bamely Deuse M

UL LLC

Page 38 / 44

## CERTIFICATE OF COMPLIANCE

7Å

\_inMot

ENG

Certificate Number Report Reference Date UL-US-L354430-11-52105102-2 E354430-20150125 5-May-2021

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements

| Model           | Category Description   |
|-----------------|------------------------|
| P10-70-SSCx160  | Incomplete Motor Parts |
| P10-70-SSCx240  | Incomplete Motor Parts |
| P10-70-SSCx320  | Incomplete Motor Parts |
| P10-70-SSCx400  | Incomplete Motor Parts |
| P10-70-SSCx480  | Incomplete Motor Parts |
| P10-70-SSCx80   | Incomplete Motor Parts |
| P10-70x160+     | Incomplete Motor Parts |
| P10-70x240+     | Incomplete Motor Parts |
| P10-70x320+     | Incomplete Motor Parts |
| P10-70x400+     | Incomplete Motor Parts |
| P10-70x480+     | Incomplete Motor Parts |
| P10-70x80+      | Incomplete Motor Parts |
| PS10-70-SSCx160 | Incomplete Motor Parts |
| PS10-70-SSCx240 | Incomplete Motor Parts |
| PS10-70-SSCx320 | Incomplete Motor Parts |
| PS10-70-SSCx400 | Incomplete Motor Parts |
| PS10-70-SSCx480 | Incomplete Motor Parts |
| PS10-70-SSCx80  | Incomplete Motor Parts |
| PS10-70x160+    | Incomplete Motor Parts |
| PS10-70x240+    | Incomplete Motor Parts |
| PS10-70x320+    | Incomplete Motor Parts |
| PS10-70x400+    | Incomplete Motor Parts |
| PS10-70x480+    | Incomplete Motor Parts |
| PS10-70x80+     | Incomplete Motor Parts |

Bamples

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authori: contact a local UL Customer Service Representative at <a href="http://ul.com/aboutul/locations/">http://ul.com/aboutul/locations/</a>

UL LLC

Կ

of UL. For

## CERTIFICATE OF COMPLIANCE

.inMot

ENG

| Certificate Number<br>Report Reference<br>Date       | UL-CA-L354430-31-52105102-2<br>E354430-20150125<br>5-May-2021                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Issued to:                                           | NTI AG<br>Bodenaeckerstr 2 SPREITENBACH<br>Switzerland 8957                                                                                                                                                                                                                                                                                      |
| This is to certify that<br>representative samples of | NDMM8 - Incomplete Rotating Machines and Rotating<br>Machine Parts Certified for Canada - Component                                                                                                                                                                                                                                              |
|                                                      | See Addendum Page for Product Designation(s).                                                                                                                                                                                                                                                                                                    |
|                                                      | Have been investigated by UL in accordance with the component requirements in the Standard(s) indicated on this Certificate. UL Recognized components are incomplete in certain constructional features or restricted in performance capabilities and are intended for installation in complete equipment submitted for investigation to UL LLC. |
| Standard(s) for Safety:                              | CSA C22.2 NO. 100, 7th Ed., Issue Date: 2014-07-01,<br>Revision Date: 2017-04-01                                                                                                                                                                                                                                                                 |
| Additional Information:                              | See the UL Online Certifications Directory at<br>https://iq.ulprospector.com for additional information                                                                                                                                                                                                                                          |

This *Certificate of Compliance* does not provide authorization to apply the UL Recognized Component Mark. Only the UL Follow-Up Services Procedure provides authorization to apply the UL Mark.

Only those products bearing the UL Recognized Component Mark should be considered as being UL Certified and covered under UL's Follow-Up Services.

of UL Fr

Look for the UL Recognized Component Mark on the product.

vided on behalf of UL LLC (UL) or any

Bamples

Bruce Mahrenholz, Director North American Certification Program UL LLC Any information and documentation involving UL Mark services are procontact a local UL Customer Service Representative at <u>http://d.com/ab</u>

## CERTIFICATE OF COMPLIANCE

\_inMot

ENG

Certificate Number Report Reference Date UL-CA-L354430-31-52105102-2 E354430-20150125 5-May-2021

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements

| Model           | Category Description   |
|-----------------|------------------------|
| P10-70-SSCx160  | Incomplete Motor Parts |
| P10-70-SSCx240  | Incomplete Motor Parts |
| P10-70-SSCx320  | Incomplete Motor Parts |
| P10-70-SSCx400  | Incomplete Motor Parts |
| P10-70-SSCx480  | Incomplete Motor Parts |
| P10-70-SSCx80   | Incomplete Motor Parts |
| P10-70x160+     | Incomplete Motor Parts |
| P10-70x240+     | Incomplete Motor Parts |
| P10-70x320+     | Incomplete Motor Parts |
| P10-70x400+     | Incomplete Motor Parts |
| P10-70x480+     | Incomplete Motor Parts |
| P10-70x80+      | Incomplete Motor Parts |
| PS10-70-SSCx160 | Incomplete Motor Parts |
| PS10-70-SSCx240 | Incomplete Motor Parts |
| PS10-70-SSCx320 | Incomplete Motor Parts |
| PS10-70-SSCx400 | Incomplete Motor Parts |
| PS10-70-SSCx480 | Incomplete Motor Parts |
| PS10-70-SSCx80  | Incomplete Motor Parts |
| PS10-70x160+    | Incomplete Motor Parts |
| PS10-70x240+    | Incomplete Motor Parts |
| PS10-70x320+    | Incomplete Motor Parts |
| PS10-70x400+    | Incomplete Motor Parts |
| PS10-70x480+    | Incomplete Motor Parts |
| PS10-70x80+     | Incomplete Motor Parts |

Bamples

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authori: contact a local UL Customer Service Representative at <a href="http://ul.com/aboutul/locations/">http://ul.com/aboutul/locations/</a>

UL LLC

Կ

of UL. For

LinMot®

## 12 EU Declaration of Conformity CE-Marking

NTI AG / LinMot ® Bodenaeckerstrasse 2 8957 Spreitenbach

Switzerland

Tel.: +41 (0)56 419 91 91 Fax: +41 (0)56 419 91 92

declares under sole responsibility the compliance of the products:

- Linear Motors of the Series PS10-70xxx-xx-xx
- Linear Motors of the Series PS10-70xxx-xx-D04
- Linear Motors of the Series PS10-70xxx-xx-D05
- Linear Motors of the Series **PS10-70xxx-xx-D24**
- Linear Motors of the Series PS10-70xxx-xx-D24S
- Linear Motors of the Series **PS10-70xxx-xx-D25**
- Linear Motors of the Series PS10-70xxx-xx-D25S
- Linear Motors of the Series **PS10-70xxx-xx-D26**
- Linear Motors of the Series **PS10-70xxx-xx-D34**

with the Low Voltage Directive 2014/35/EU 2014/35/EU.

Applied harmonized standards:

• EN 61800-5-1: 2007

with the EMC Directive 2014/30/EU.

Applied harmonized standards:

- EN 61000-6-2: 2005 (Immunity for industrial environments)
- EN 61000-6-4: 2007 (Emission for industrial environments)

According to the EMC directive, the listed devices are not independently operable products.

Compliance of the directive requires the correct installation of the product, the observance of specific installation guides and product documentation. This was tested on specific system configurations.

The safety instructions of the manuals are to be considered.

The product must be mounted and used in strict accordance with the installation instructions contained within the installation guide, a copy of which may be obtained from NTI AG.

Company: NTI AG Spreitenbach, 25.08.2023

Jallan

Dr.-Ing. Ronald Rohner CEO NTI AG

LinMot®

## **13 UK Declaration of Conformity UKCA-Marking**

NTI AG / LinMot ® Bodenaeckerstrasse 2 8957 Spreitenbach

Switzerland

Tel.: +41 (0)56 419 91 91 Fax: +41 (0)56 419 91 92

declares under sole responsibility the compliance of the products:

- Linear Motors of the Series PS10-70xxx-xx-xx
- Linear Motors of the Series PS10-70xxx-xx-D04
- Linear Motors of the Series PS10-70xxx-xx-D05
- Linear Motors of the Series **PS10-70xxx-xx-D24**
- Linear Motors of the Series PS10-70xxx-xx-D24S
- Linear Motors of the Series **PS10-70xxx-xx-D25**
- Linear Motors of the Series PS10-70xxx-xx-D25S
- Linear Motors of the Series **PS10-70xxx-xx-D26**
- Linear Motors of the Series **PS10-70xxx-xx-D34**

with the Electrical Equipment (Safety) Regulations 2016 SI 2016 No. 1101

Applied designated standards:

• EN 61800-5-1: 2007

with the EMC Regulation S.I. 2016 No. 1091.

Applied designated standards:

- EN 61000-6-2: 2005 (Immunity for industrial environments)
- EN 61000-6-4: 2007 (Emission for industrial environments)

According to the EMC regulation, the listed devices are not independently operable products.

Compliance of the regulation requires the correct installation of the product, the observance of specific installation guides and product documentation. This was tested on specific system configurations.

The safety instructions of the manuals are to be considered.

The product must be mounted and used in strict accordance with the installation instructions contained within the installation guide, a copy of which may be obtained from NTI AG.

Company: NTI AG Spreitenbach, 25.08.2023

Jallan

Dr.-Ing. Ronald Rohner CEO NTI AG

# ALL LINEAR MOTION FROM A SINGLE SOURCE

## LinMot Europe

## NTI AG - LinMot & MagSpring

Bodenaeckerstrasse 2 CH-8957 Spreitenbach

| Sales / Administration: | +41-(0)56-419 91 91<br>office@linmot.com      |
|-------------------------|-----------------------------------------------|
| Tech. Support:          | +41-(0)56-544 71 00<br>support@linmot.com     |
| Tech. Support (Skype):  | skype:support.linmot                          |
| Fax:<br>Web:            | +41-(0)56-419 91 92<br>http://www.linmot.com/ |

## LinMot USA

LinMot USA, Inc. N1922 State Road 120, Unit 1 Lake Geneva, WI 53147

Sales / Administration : 262-743-2555

Tech. Support:

usasupport@linmot.com

E-Mail: Web: usasales@linmot.com http://www.linmot-usa.com/

Visit http://www.linmot.com/ to find a distributor next to you.