

# SERIES E1400





- Time Curves
- Real Time (Streaming)
- Synchronous control (Drive profiles)
- Master Encoder Synchronization (In/Out)
- PLC or Stand-Alone Solutions
- Industrial Ethernet Configuration / Remote Access Ethernet
- Safe Torque Off
- Safe Limited Speed Ready
- Interface for optional incremental and absolute sensor
- Position Encoder Simulation (RS 422)
- Master / Slave Solutions
- ± 10 VDC Force / Speed Control
- Supports Plug and Play





# **Servo Drive Series E1400**

Series E1400 Servo Drives are modular axis drives, with 32-bit position resolution and an integrated power stage 3x400VAC, for linear motors and rotary motors.

The drives are suitable for simplest, standard and high-end positioning tasks across the entire force range of the LinMot product range.



## **CONNECTION TO MACHINE DRIVE**

The Series E1400 Servo Drives can be actuated by machine controls from many manufacturers or brands, via digital inputs and outputs, RS232 or RS485 serial interface, CanBus CANopen and DeviceNet interfaces, Profibus DP, or industrial ETHERNET.

# **PROCESS AND SAFETY INTERFACES**

Fast process interfaces for direct processing of sensor signals are available as freely programmable analog and digital inputs, a fast trigger input, and a capture input.

The safety interface on Servo Drive with fieldbus interfaces or industrial ETHER-NET allows safe stop of the drives via control signals, per EN 954-1, without interrupting the power supply.

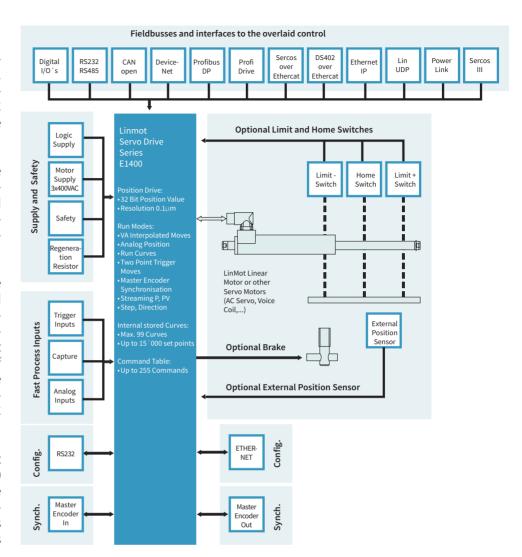
## **LOGIC AND POWER SUPPLY**

The Servo Drives have two separate power supply inputs for the logic and power elements.

In an E-stop and safe stop of the drive, only the power element supply is cut off from the drive. The logic supply and the drive continue to run.

This has the advantage that the drive and linear motor do not need to be reinitialized when the machine is restarted, since all process data, including the current position of the linear motor, are still up to date.




# **System Integration**

Flexible hardware enables control of any 1/2/3- phase motors. Thus, low-power rotary servomotors, such as brushless DC motors, can be integrated in the same control concept.

Additionally, the drives can be equipped with optional peripherals, such as reference and end stop switches, high-precision external position sensors, or a mechanical holding brake.

Series E1400 Servo Drives have analog and digital inputs and outputs, serial interfaces, field-busses, and ETHERNET connections. The user is therefore not dependent on the selection of the overlaid drive. An appropriate interface is available, with associated protocols, for any PLC or IPC solution.

With flexibility and a compact form factor, LinMot Series E1400 Servo Drives provide a complete solution for a flexible drive concept in single and multiple axes applications, with linear motors and other actuators.



# **MASTER ENCODER**

For synchronization to a mechanical master shaft, or a rotating main drive, the Axis (linear motors and rotary motors) can be coupled to an electronic main shaft via the Master Encoder Interface.

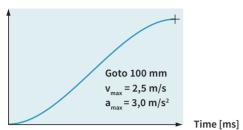
The encoder signal from the main shaft can be passed through by the Master Encoder Interface, so that any number of linear motors can be synchronized to the main shaft.

#### **MOTOR INTERFACES**

E1400 Servo Drives provide all necessary interfaces to operate linear or rotary motors with optional external peripherals, such as end position and reference switches, a mechanical brake, or a high-resolution external position sensor.

# **CONFIGURATION**

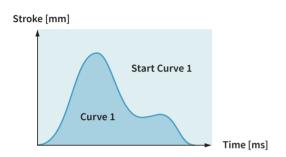
Parameterization and configuration of the Servo Drive is done via the Ethernet interface on the front side for simultaneous configuration of several drives.


LinMot Talk user-friendly PC software is available for configuration. In addition to online documentation, LinMot Talk provides extensive debugging tools, such as an oscilloscope and an error inspector, for simple and rapid start-up of the Axis.

Fieldbus and ETHERNET drives can also be configured directly by the overlaid control.



#### **INTERPOLATED MOVES**

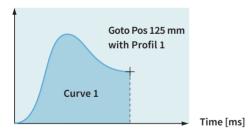

#### Stroke [mm]



For direct position targets, using absolute or relative positioning, the desired position is reached using acceleration and velocity-limited motion profiles or jerk optimized profiles (jerk limited and Bestehorn). Positioning commands can be invoked via the serial interfaces, CANopen, DeviceNet, Profibus, Ethernet or a trigger input.

Stroke range: $\pm 100 \text{ m}$ Position Resolution: $0.1 \mu m \text{ (32Bit)}$ Velocity Resolution: $1.0 \mu m/s \text{ (32Bit)}$ Acceleration Resol.: $10.0 \mu m/s^2 \text{ (32Bit)}$ 

#### **TIME CURVES**

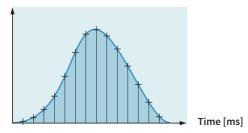



Up to 100 different time curves can be stored on Series E1400 drives, with up to 16`000 individual waypoints. The motor can thus travel along time curves of any complexity, such as those generated by CAD programs and stored in the drive (Excel CSV format). The time curves can be invoked via the serial interface, fieldbusses, ETHERNET, or the trigger input.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 \text{Bit}) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$ 

#### **PROFILED MOVES**

#### Stroke [mm]




For travel to an absolute position, or shifting by a relative position, any desired motion rules can be stored besides the VA interpolator. They are stored in the drive as motion profiles (Excel CSV format). The positions can be approached, for example, with a sinusoidal motion to optimize power loss, or special reverse optimized motion profiles.

 $\begin{array}{lll} \textbf{Stroke range:} & \pm 100 m \\ \textbf{Position Resolution:} & 0.1 \ \mu m \ (32 Bit) \\ \textbf{Motion profiles:} & \text{Max. } 100 \ \text{Time Curves} \\ \textbf{Curve points:} & \text{Max. } 16'000 \ \text{points} \\ \end{array}$ 

#### **SETPOINT STREAMING**

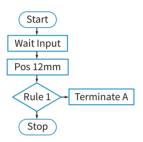
# Stroke [mm]



Overlaid NC drives with fieldbus or ETHERNET interfaces communicate with the Servo Drives via "Position Streaming". The position and velocity calculated in the overlaid control is transmitted to the Servo Drive cyclically. The P, PV, or PVT mode is available for this transmission.

Position Resolution:32 BitVelocity Resolution:32 BitInterpolator:8 kHzCycle times:0.25 - 5 ms

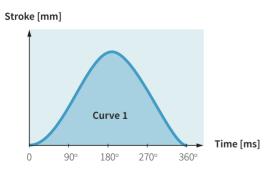



#### **EASY STEPS**

| Input 1 | Pos 125 mm   |
|---------|--------------|
| Input 2 | Pos 250 mm   |
| Input 3 | Curve 1      |
| Input 4 | Pos -30 mm   |
| Input 5 | Pos +12,5 mm |
| Input 6 | Curve 2      |
| Input 7 | Pos 2 mm     |
| Input 8 | Pos -12,5 mm |

With the Easy Steps function, up to 8 positions or independent travel commands can be stored on the drive, and addressed via 8 digital inputs or fieldbus interfaces/ETHERNET.

Digital inputs:max. 8Interface:X4Scanning rate:200 µsec

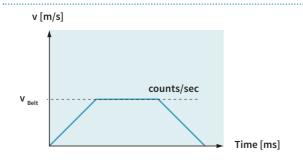

#### **COMMAND TABLE**



Entire motion sequences with up to 255 individual motion commands can be stored in the Command Table. This is primarily advantageous if complete motion sequences need to be executed very quickly, without dead time from the overlaid drive. In the Command Table, the programmer has access to all motion commands, internal parameters, and digital inputs and outputs.

Commands: max. 255
Cycle time: 100 µsec

#### **MASTER ENCODER SYNCHRONIZATION (MT)**




For synchronization to an external main or master shaft, the linear motor travels along the motion profiles stored in the drive, at the machine speed (machine angle 0...360°). Using this function, mechanical cam discs can be replaced with highly dynamic linear motors. The motion profiles can be freely defined, and the correct motion profile can be invoked during product changeover with no changeover time.

**Motion profiles:** Max. 100 curve profiles **Curve points:** Max. 16'000 points

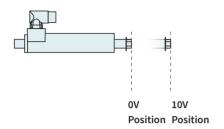
Encoder counter: 32 Bit
Encoder input: A/B/Z (RS422)
Max. counting frequency Max. 4.5 MHz

#### **BELT SYNCHRONIZATION**



Synchronization to a belt speed can be done using the Master Encoder Interface or Step/Direction/ Zero interface. Applications such as the "flying saw", synchronous loading or unloading, synchronous filling or labeling of bottles or containers on a conveyor belt, and many other applications can be implemented in this way.

**Encoder Counter:** 32 Bit


**Encoder Input:** A/B/Z (RS422), max. 5 MHz

STEP/DIR/ZERO

Max. counting frequency Max. 4.5 MHz



#### **ANALOG POSITION**



For an analog position target, the linear motor travels to a position proportional to the input voltage. The position is either scanned continuously, or only after a rising edge of the trigger signal. In order to prevent uncontrolled jumps in position, the motor travels to the positions with a programmable maximum acceleration and velocity (VA interpolator).

 Inputs:
 Analog Input X4 or X20

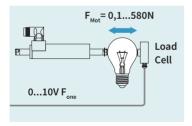

 Voltage range:
 0-10VDC or ±10V

**Resolution:** 12 Bit

**Scanning rate:** >=100 µsec (adjustable)

#### **EASY STEPS PARAMETER SCALE**

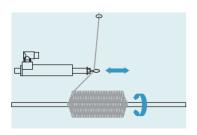
Maximum Force [0...10V => 0...100%]




Easy Steps provide the ability to parameterize internal parameters using two analog inputs. If, for example, the maximum motor current is read at an analog input, then the maximum motor force can be provided as analog for freely programmable joining processes.

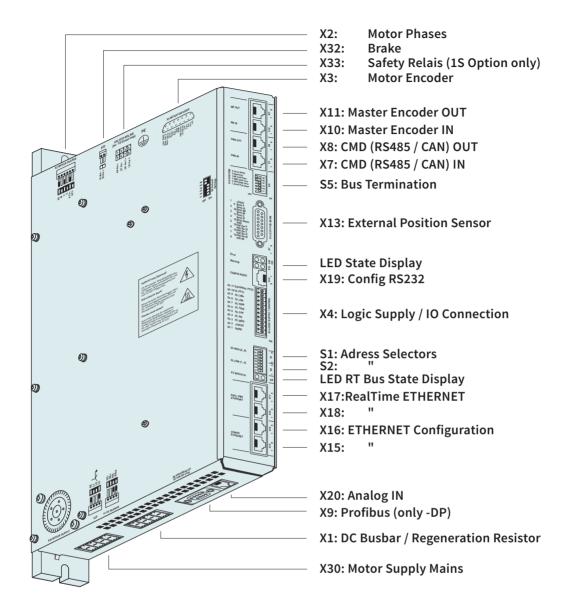
**Inputs:** 2 x Analog (X4.4, X4.7)

Voltage range:0-10VDCResolution:12 BitScanning rate:200 μsec


#### **CLOSED LOOP FORCE CONTROL**



Using the force control technology function, precise joining processes can be implemented reliably and reproducibly with high-precision force control. For force control, the current motor force is measured with a load cell and controlled in the drive. Joining process or quality checks with high requirements for applied force can be implemented.


Analog Input: 0-10V or ±10V Resolution: 12 Bit Min. force resolution: 0.1N

#### WINDING APPLICATION



For winding textile yarns, glass fiber optics, or wires, a complete functional block is available that controls the entire sequence of a complete winding process.





| Interfaces             | E1450-PL-QN | E1430-PN-QN | E1450-PD-QN | E1450-SC-QN | E1450-IP-QN | E1450-LU-QN | E1450-EC-QN | E1450-DS-QN | E1450-SE-QN | E1430-DP-QN | E1400-GP-QN |
|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| CANopen                |             |             |             |             |             |             |             |             |             |             | •           |
| LinRS                  |             |             |             |             |             |             |             |             |             |             | •           |
| POWERLINK              | •           |             |             |             |             |             |             |             |             |             |             |
| PROFINET               |             | •           |             |             |             |             |             |             |             |             |             |
| PROFINET<br>Profidrive |             |             |             |             |             |             |             |             |             |             |             |
| SERCOS III             |             |             |             | •           |             |             |             |             |             |             |             |
| ETHERNET<br>IP         |             |             |             |             | •           |             |             |             |             |             |             |
| LinUDP                 |             |             |             |             |             | •           |             |             |             |             |             |
| ETHERCAT               |             |             |             |             |             |             | •           |             |             |             |             |
| ETHERCAT<br>CiA402     |             |             |             |             |             |             |             | •           |             |             |             |
| ETHERCAT<br>SoE        |             |             |             |             |             |             |             |             | •           |             |             |
| PROFIBUS<br>DP         |             |             |             |             |             |             |             |             |             | •           |             |











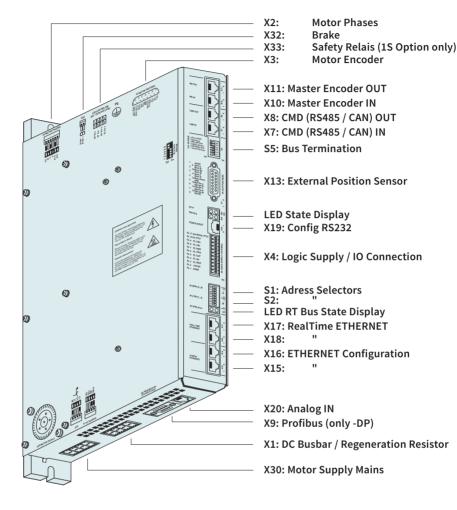




E1450-PL-QN E1450-PN-QN E1450-PD-QN E1450-SC-QN

E1450-IP-QN

E1450-LU-QN E1450-EC-QN


E1450-DS-QN

**E1450-SE-QN** 

E1430-DP-QN

E1400-GP-QN

- Absolute & Relative Positioning
- Travel Along Time Curves
- Positioning using Motion Profiles
- » Internally stored Motion Commands
- » Internally stored Motion Sequences
- Master Encoder Synchronization
- Synchronization to Belt Speed
- » Position Streaming
- » Analog Position Target
- » Analog Parameter Scaling
- » Winding Function Block
- » Force Control Technology Function
- » Customer-Specific Functions



#### **INDUSTRIAL ETHERNET**

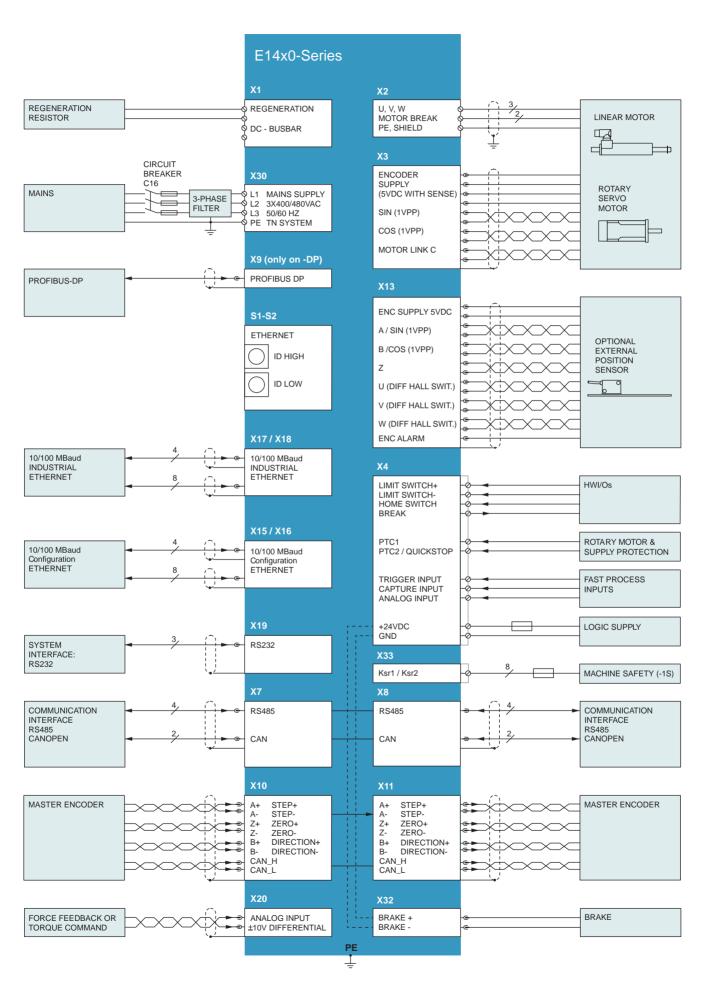
Series E1400 drives allow integration of Lin-Mot linear motors in control concepts with industrial ETHERNET interfaces. The user can integrate Series E1400 drives regardless of the provider of the overlaid control.

LinMot drives are available with common industrial ETHERNET protocols. Since all ETHERNET drives have the same motion command interface and the control and status word are identical, software blocks that have been implemented once can be transferred to other drives without any problem.

Series E1400 Servo Drives support the following industrial ETHERNET protocols:

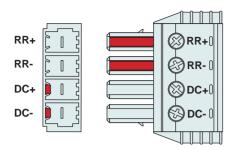
- » Profinet
- » ETHERNET IP
- » PowerLink
- » EtherCat
- » Sercos III
- » Profibus

The appropriate drive is available for each protocol.


#### **TECHNICAL DATA**

Type: Realtime ETHERNET
Switch/Hub: Integrated 2-Port
Hub/Switch
Transfer rate: 10/100MBit/sec

Minimal cycle times:


Bus cycle: 250 µs
10 update: 250 µs
Trigger Input: 125 µs
Position control loop: 125 µs
Current control loop: 125 µs





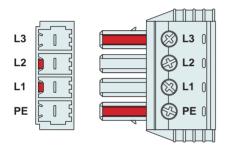



## X1 DC BUSBAR / REGENERATION RESISTOR





For coupling the DC busbar of different drives, contact support@linmot.com for additional information.

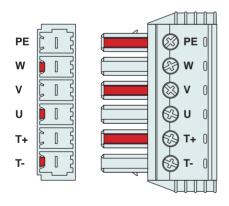



It's not allowed to power the drives through DC+ and DC-!

#### **Screw Terminals:**

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- » Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 0.25–4 mm² (depends on Motor current)/AWG 24-12
  - » Stripping length 10 mm

#### X30 MOTOR SUPPLY MAINS




| Nr      | Designation             |
|---------|-------------------------|
| L1 - L3 | 3 x 400/480VAC 50/60 Hz |
| PE      | Protective Earth        |

#### **Screw Terminals:**

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- » Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- » Conductor cross-section: 2.5–4 mm² (depends on Motor current) / AWG 24 -12
- » Stripping length 10 mm

# X2 MOTOR PHASES



| Nr | Designation                                     |
|----|-------------------------------------------------|
| PE | Protective Earth                                |
| W  | Motor Phase W                                   |
| V  | Motor Phase V                                   |
| U  | Motor Phase U                                   |
| T+ | Temperature Sensor KTY+ (on DC- voltage level!) |
| T- | Temperature Sensor KTY- (on DC- voltage level!) |

The Shield of the motor cable has to be mounted with a surface as large as possible (low ohm, low impedance). Use an EMC shield clamp for fixing.



#### Attention:

An isolated thermistor is necessary! Especially LinMot D01 and D02 Motors can not be connected!

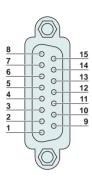


#### **Screw Terminals:**

- » Tightening torque: 0.7 0.8 Nm (6.2 7.0 lbin)
- Use a cross-head screw driver (PH1)
- » Use 60/75°C copper conductors only
- Conductor cross-section: 0.25-4 mm<sup>2</sup> (depends on Motor current)/AWG 24 -12
- Stripping length 10 mm



#### X32 MOTOR BRAKE




Brake -

Brake +

The brake is powered internally by 24VDC from X4! It's suitable for driving inductive loads up to 1.5A (preliminary). The V1 Drives had a separate connector for the brake supply (X31).

# X3 MOTOR ENCODER (MOTOR LINK C)



DSUB-15 (m)

| Nr   |    | Description    |  |
|------|----|----------------|--|
| 8    |    | Motor Link C-  |  |
|      | 15 | Motor Link C+  |  |
| 7    |    | do not connect |  |
|      | 14 | do not connect |  |
| 6    |    | do not connect |  |
|      | 13 | do not connect |  |
| 5    |    | GND            |  |
|      | 12 | do not connect |  |
| 4    |    | GND Sense      |  |
|      | 11 | +5V Sense      |  |
| 3    |    | Cos-           |  |
|      | 10 | Cos+           |  |
| 2    |    | Sin-           |  |
|      | 9  | Sin+           |  |
| 1    |    | +5V            |  |
| Case |    | Shield         |  |

Motor Link C is a high speed serial communication protocol to the motor encoder

## X4 LOGIC SUPPLY / IO CONNECTION

Spring cage connector

| Nr | Description |           |                                                                 |
|----|-------------|-----------|-----------------------------------------------------------------|
| 11 | Input       | Quickstop | Quickstop, PTC2 Input                                           |
| 10 | I/O         | X4.10     | Configurable IO, PTC 1 Input                                    |
| 9  | I/O         | X4.9      | Configurable IO                                                 |
| 8  | I/O         | X4.8      | Configurable IO                                                 |
| 7  | I/O         | X4.7      | Configurable IO, Analog Input for EasySteps Application         |
| 6  | I/O         | X4.6      | Configurable IO, Trigger Input                                  |
| 5  | I/O         | X4.5      | Configurable IO                                                 |
| 4  | I/O         | X4.4      | Configurable IO, Analog Input (configurable as high imp. Input) |
| 3  | I/O         | X4.3      | Configurable IO                                                 |
| 2  | +24VDC      | Supply    | Logic Supply 22-26 VDC                                          |
| 1  | GND         | Supply    | Ground                                                          |

Inputs (X4.3 .. X4.11): shortcut 24V / 5mA (Low Level: -0.5 to 5VDC, High Level: 15 to 30VDC)

Outputs (X4.3 .. X4.10): 24V / max.100mA, Peak 370mA (will shut down if exceeded)

Supply 24V / type. 1A / max. 2.5A (if all outputs "on" with max. load.)

- » Use 60/75°C copper conductors only
- » Conductor cross-section max. 1.5 mm²
- » Stripping length: 10 mm

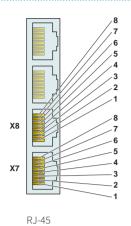
## X33 SAFETY RELAYS (ONLY WITH THE -1S OPTION)

X33. 4/8 Ksr+ X33. 3/7 Ksr-X33. 2/6 Ksr f+ X33. 1/5 Ksr f-



X33 STO RELAYS

Spring cage connector

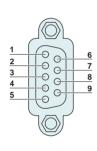

| Nr  | Description |                                      |
|-----|-------------|--------------------------------------|
| 4/8 | Ksr+        | Safety Relay 1 / 2 Input positive    |
| 3/7 | Ksr -       | Safety Relay 1 / 2 Input negative    |
| 2/6 | Ksr f+      | Safety Relay 1 / 2 feedback positive |
| 1/5 | Ksr f-      | Safety Relay 1 / 2 feedback negative |



- Use 60/75°C copper conductors only
- Conductor cross-section max.
   1.5mm² (AWG 16)
- Stripping length: 10 mm
- Never connect the safety relays to the logic supply of the drive!



## X7-X8 CMD (RS485/CAN)

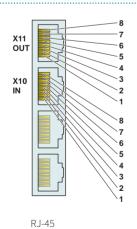



| Nr   | Description |   |
|------|-------------|---|
| 1    | RS485_Rx+   | А |
| 2    | RS485_Rx-   | В |
| 3    | RS485_Tx+   | Υ |
| 4    | GND         |   |
| 5    | GND         |   |
| 6    | RS485_Tx-   | Z |
| 7    | CAN_H       |   |
| 8    | CAN_L       |   |
| Case | Shield      |   |

Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.

The built in RS485 and CAN terminations can be activated by S5.2 and S5.3. X7 is internally connected to X8 (1:1 connection)

## X9 PROFIBUS DP (ONLY AVAILABLE ON E1430-DP-QN)




DSUB-9 (f)

| Nr   |   | Description   |            |
|------|---|---------------|------------|
| 1    |   | Not connected |            |
|      | 6 | +5V           | (isolated) |
| 2    |   | Not connected |            |
|      | 7 | Not connected |            |
| 3    |   | RxD/TxD-P     |            |
|      | 8 | RxD/TxD-N     |            |
| 4    |   | CNTR-P        |            |
|      | 9 | Not connected |            |
| 5    |   | GND           | (isolated) |
| Case |   | Shield        |            |

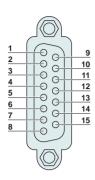
Max. Baud rate: 12 Mbaud

## X10-X11 MASTER ENCODER IN (X10) / MASTER ENCODER OUT (X11)



| Nr   | Incremental | Step/Direction | EIA/TIA 568A colors |
|------|-------------|----------------|---------------------|
| 1    | A+          | Step+          | Green/White         |
| 2    | A-          | Step-          | Green               |
| 3    | B+          | Direction+     | Orange/White        |
| 4    | Z+          | Zero+          | Blue                |
| 5    | Z-          | Zero-          | Blue/White          |
| 6    | B-          | Direction-     | Orange              |
| 7    | CAN_H       | CAN_H          | Brown/White         |
| 8    | CAN_L       | CAN_L          | Brown               |
| Case | Shield      | Shield         |                     |

Use twisted pair (1-2, 3-6, 4-5, 7-8) cable for wiring.


Master Encoder Inputs:Differential RS422, max. 25 M counts/s, 40ns edge separationMaster Encoder Outputs:Amplified RS422 differential signals from Master Encoder IN (X10)

The CAN bus can be terminated with S5.4.

All devices, which are connected to X10/X11 must be referenced to the same ground.



#### X13 EXTERNAL POSITION SENSOR DIFFERENTIAL HALL SWITCHES



DSUB-15 (f)

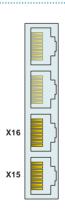
| Nr   |    | Description | Description   |        | Dat           |
|------|----|-------------|---------------|--------|---------------|
| 1    |    | +5V DC      |               | +5V DC |               |
|      | 9  |             | A+            |        | A+            |
| 2    |    | A-          |               | A-     |               |
|      | 10 |             | B+            |        | B+            |
| 3    |    | B-          |               | B-     |               |
|      | 11 |             | Z+            |        | Data+         |
| 4    |    | Z-          |               | Data-  |               |
|      | 12 |             | Encoder Alarm |        | Encoder Alarm |
| 5    |    | GND         |               | GND    |               |
|      | 13 |             | U+            |        | nc            |
| 6    |    | U-          |               | nc     |               |
|      | 14 |             | V+            |        | nc            |
| 7    |    | V-          |               | nc     |               |
|      | 15 |             | W+            |        | Clk+          |
| 8    |    | W-          |               | Clk-   |               |
| Case |    | Shield      |               | Shield |               |

**Position Encoder Inputs (RS422):** Max Input Frequency: 25 M counts/s with quadrature

decoding, 40ns edge separation

**Encoder Simulation Outputs (RS422):** Max Output Frequency: 4 M counts/s with quadrature

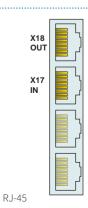
decoding, 250ns edge separation


**Differential Hall Switch Inputs (RS422):** Input Frequency: <1kHz

5V / 1mA

**Sensor Supply:** 5VDC max. 100mA / 9VDC 100mA (SW selectable)

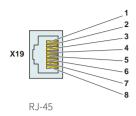
# X15-X16 ETHERNET CONFIGURATION 10/100 MBIT/S


Enc. Alarm In:



RJ-45

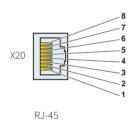
| Nr  | Description                                                             |  |
|-----|-------------------------------------------------------------------------|--|
| X16 | Internal 2-Port 10BASE-T and 100BASE-TX Ethernet Switch with Auto MDIX. |  |
| X15 | Internal 2-Port 10BASE-1 and 100BASE-1X Etnemet Switch with Auto MDIX.  |  |


## X17 - X18 REALTIME ETHERNET 10/100 MBIT/S



| Nr  | Description |                                          |
|-----|-------------|------------------------------------------|
| X18 | RT ETH Out  | Specification depends on RT-Bus Type.    |
| X17 | RT ETH In   | Please refer to according documentation. |




#### X19 SYSTEM



| Nr   | Description    |
|------|----------------|
| 1    | Do not connect |
| 2    | Do not connect |
| 3    | RS232 Rx       |
| 4    | GND            |
| 5    | GND            |
| 6    | RS232 Tx       |
| 7    | Do not connect |
| 8    | Do not connect |
| case | Shield         |

Use isolated USB-RS232 converter (Art.-No. 0150-2473) for configuration over RS232.

## X20 ANALOG IN (+-10V DIFFERENTIAL ANALOG INPUT)



| Nr   | Description    |
|------|----------------|
| 1    | Do not connect |
| 2    | Do not connect |
| 3    | Analog In-     |
| 4    | GND            |
| 5    | GND            |
| 6    | Analog In+     |
| 7    | Do not connect |
| 8    | Do not connect |
| case | Shield         |



## S5 BUS TERMINATION / ANIN2 PULL DOWN



| Switch | E1400                                                                                            |
|--------|--------------------------------------------------------------------------------------------------|
| S5     | Switch 6: Override Configuration Ethernet to DHCP                                                |
|        | Switch 5: Bootstrap: Must be off for normal operation                                            |
|        | Switch 4: CAN termination on ME (120R between pin 7 and 8 on X10/X11) on/off                     |
|        | Switch 3: CAN termination on CMD (120R between pin 7 and 8 on X7/X8) on/off                      |
|        | Switch 2: Termination resistor for RS485 on CMD (120R between pin 1 and 2 on X7/X8) on/off       |
|        | Switch 1: AnIn2 pull down (4k7 Pull down on X4.4). Set to ON, if X4.4 is used as digital output. |

Factory setting: all switches "on" except S5.5 (Bootstrap) and S5.6 (Override to DHCP)

## LEDS STATE DISPLAY



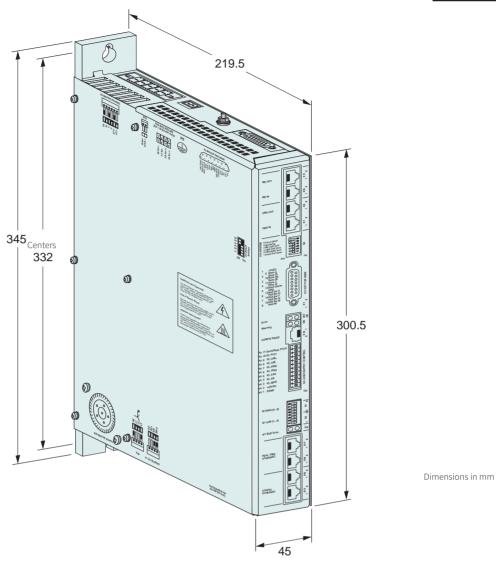
| 24VOK | Green  | 24V Logic Supply OK                   |
|-------|--------|---------------------------------------|
| EN    | Yellow | Motor Enabled / Error Code Low Nibble |
| Warn  | Yellow | Warning / Error Code High Nibble      |
| Error | Red    | Error                                 |

#### LEDS RT BUS LED



| BUSOK     | Green | OK    |
|-----------|-------|-------|
| BUS Error | Red   | Error |

The use of these LEDs depends on the type of fieldbus which is used. Please see the corresponding manual for further information.


## S1 - S2 ADRESS SELECTORS



| Switch  |                                                  |
|---------|--------------------------------------------------|
| S1 (58) | Bus ID High (0F) Bit 5 is the LSB, bit 8 the MSB |
| S2 (14) | Bus ID Low (0F) Bit 1 is the LSB, bit 4 the MSB  |

The use of these switches depends on the type of fieldbus which is used. Please see the corresponding manual for further information.





| E1400                                                               |                |                                                     |  |
|---------------------------------------------------------------------|----------------|-----------------------------------------------------|--|
|                                                                     |                | i                                                   |  |
| Width                                                               | mm (in)        | 45 (1.8)                                            |  |
| Height                                                              | mm (in)        | 300 (11.8)                                          |  |
| Height with fixings                                                 | mm (in)        | 345 (13.6)                                          |  |
| Depth                                                               | mm (in)        | 219.5 (8.7)                                         |  |
| Weight                                                              | kg (lb)        | 3.7 (8.2)                                           |  |
| Mounting                                                            | mm (in)        | 2 x M5, Distance 332 (13.07)                        |  |
| Case IP Code                                                        | IP             | 20                                                  |  |
| Storage temperature                                                 | °C             | -2540                                               |  |
| Transport temperature                                               | °C             | -2570                                               |  |
| Operating temperature °C                                            |                | 040 at rated data<br>4050 with power derating       |  |
| Relative humidity                                                   |                | 95% (non-condensing)                                |  |
| Pollution                                                           | IEC/EN 60664-1 | Pollution degree 2                                  |  |
| Shock resistance (16 ms)                                            | -1S option     | 3.5g                                                |  |
| Vibration resistance (10-200Hz)                                     | -1S option     | 1g                                                  |  |
| Max. case temperature                                               | °C             | 90                                                  |  |
| Max. power dissipation                                              | W              | 100                                                 |  |
| Mounting place                                                      |                | In the control cabinet                              |  |
| Mounting position                                                   |                | vertical                                            |  |
| Distance between Drives<br>(fan cooling is integrated on V2 Drives) | mm (in)        | ≥ 15 (0.6) left and right<br>≥ 200 (8) top / bottom |  |



| Servo Drives   |                                                                |             |  |
|----------------|----------------------------------------------------------------|-------------|--|
| Item           | Description                                                    | Part Number |  |
| E1400-GP-QN-0S | GENERAL PURPOSE Drive (3x400/480VAC/ 28A / 50/60Hz)            | 0150-1779   |  |
| E1430-DP-QN-0S | PROFIBUS-DP Drive (3x400/480VAC/ 28A / 50/60Hz)                | 0150-1786   |  |
| E1450-DS-QN-0S | ETHERCAT CoE (3x400/480VAC/ 28A / 50/60Hz)                     | 0150-2411   |  |
| E1450-EC-QN-0S | ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz)                   | 0150-1784   |  |
| E1450-IP-QN-0S | ETHERNET IP Drive (3x400/480VAC/ 28A / 50/60Hz)                | 0150-1782   |  |
| E1450-LU-QN-0S | LinUDP Drive (3x400/480VAC/ 28A / 50/60Hz)                     | 0150-2494   |  |
| E1450-PD-QN-0S | PROFIdrive Drive (3x400/480VAC/ 28A / 50/60Hz)                 | 0150-2621   |  |
| E1450-PL-QN-0S | POWERLINK Drive (3x400/480VAC/ 28A / 50/60Hz)                  | 0150-1791   |  |
| E1450-PN-QN-0S | PROFINET Drive (3x400/480VAC/ 28A / 50/60Hz)                   | 0150-1783   |  |
| E1450-SC-QN-0S | SERCOS III Drive (3x400/480VAC/ 28A / 50/60Hz)                 | 0150-1785   |  |
| E1450-SE-QN-0S | SERCOS over ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz)       | 0150-1899   |  |
| E1400-GP-QN-1S | GENERAL PURPOSE Drive (3x400/480VAC/ 28A / 50/60Hz / STO)      | 0150-2351   |  |
| E1430-DP-QN-1S | PROFIBUS-DP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)          | 0150-2352   |  |
| E1450-DS-QN-1S | ETHERCAT CoE (3x400/480VAC/ 28A / 50/60Hz / STO)               | 0150-2412   |  |
| E1450-EC-QN-1S | ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz / STO)             | 0150-2353   |  |
| E1450-IP-QN-1S | ETHERNET IP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)          | 0150-2354   |  |
| E1450-LU-QN-1S | LinUDP Drive (3x400/480VAC/ 28A / 50/60Hz / STO)               | 0150-2495   |  |
| E1450-PD-QN-1S | PROFIdrive Drive (3x400/480VAC/ 28A / 50/60Hz / STO)           | 0150-2622   |  |
| E1450-PL-QN-1S | POWERLINK Drive (3x400/480VAC/ 28A / 50/60Hz / STO)            | 0150-2355   |  |
| E1450-PN-QN-1S | PROFINET Drive (3x400/480VAC/ 28A / 50/60Hz / STO)             | 0150-2356   |  |
| E1450-SC-QN-1S | SERCOS III Drive (3x400/480VAC/ 28A / 50/60Hz / STO)           | 0150-2357   |  |
| E1450-SE-QN-1S | SERCOS over ETHERCAT Drive (3x400/480VAC/ 28A / 50/60Hz / STO) | 0150-2358   |  |

| Accessories           |                                       |             |  |
|-----------------------|---------------------------------------|-------------|--|
| Item                  | Description                           | Part Number |  |
| DC01-E1400/X4/X30     | Drive Connector Set for E1400-0S      | 0150-3452   |  |
| DC01-E1400/X4/X30/X33 | Drive Connector Set for E1400-1S      | 0150-3453   |  |
| DC01-E1400/X1         | Drive Connector Regeneration / Busbar | 0150-3445   |  |
| DC01-E1400/X30        | Drive Connector 3x400VAC Supply       | 0150-3449   |  |
| DC01-E1400/X32        | Drive Connector Brake                 | 0150-3450   |  |



| <br> |      |  |
|------|------|--|
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |
|      | <br> |  |
|      |      |  |
|      |      |  |
| <br> | <br> |  |
| <br> | <br> |  |
|      | <br> |  |
| <br> | <br> |  |
|      |      |  |
|      |      |  |
|      |      |  |